CURRICULUM – 2009
(C-09)

DIPLOMA IN ELECTRICAL & ELECTRONICS ENGINEERING

State Board of Technical Education & Training
Andhra Pradesh: Hyderabad
<table>
<thead>
<tr>
<th>S.NO</th>
<th>SUBJECT CODE</th>
<th>SUBJECT</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Preamble</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td>Scheme of Instruction & Exams. I year</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Scheme of Instruction & Exams. III semester</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Scheme of Instruction & Exams. IV semester</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Scheme of Instruction & Exams. V semester</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Scheme of Instruction & Exams. VI semester</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>EE-101</td>
<td>English</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>EE-102</td>
<td>Engineering Mathematics-I</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>EE-103</td>
<td>Engineering Physics</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>EE-104</td>
<td>Engineering Chemistry & Environmental Studies</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>EE-105</td>
<td>Basic Electrical Engineering</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>EE-106</td>
<td>Mechanical workshop</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>EE-107</td>
<td>Engineering Drawing</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>EE-108</td>
<td>Physics Lab</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>EE-109</td>
<td>Chemistry Lab</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>EE-110</td>
<td>Information Technology lab</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>EE-111</td>
<td>Electrical workshop</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>EE-301</td>
<td>Engineering Mathematics—II</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>EE-302</td>
<td>Electrical Circuits</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>EE-303</td>
<td>D.C. Machines & Batteries</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>EE-304</td>
<td>Electrical & Electronic Measuring Instruments</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>EE-305</td>
<td>Electronics</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>EE-306</td>
<td>D.C. Machines lab</td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>EE-307</td>
<td>Electrical Measurements Lab</td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>EE-308</td>
<td>Electrical Wiring Lab</td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>EE-309</td>
<td>Electronics lab</td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>EE-310</td>
<td>English Communication lab(Level –I)</td>
<td></td>
</tr>
</tbody>
</table>

I YEAR

III SEMESTER
IV SEMESTER

<table>
<thead>
<tr>
<th>#</th>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>EE-401</td>
<td>AC Machines –I</td>
</tr>
<tr>
<td>29</td>
<td>EE-402</td>
<td>Power Systems-I</td>
</tr>
<tr>
<td>30</td>
<td>EE-403</td>
<td>Electrical Installation & Estimation</td>
</tr>
<tr>
<td>31</td>
<td>EE-404</td>
<td>Digital Electronics and Micro controllers</td>
</tr>
<tr>
<td>32</td>
<td>EE-405</td>
<td>General Mechanical Engineering</td>
</tr>
<tr>
<td>33</td>
<td>EE-406</td>
<td>A.C. Machines Lab-I</td>
</tr>
<tr>
<td>34</td>
<td>EE-407</td>
<td>Electrical Engineering Drawing</td>
</tr>
<tr>
<td>35</td>
<td>EE-408</td>
<td>Digital Electronics lab</td>
</tr>
<tr>
<td>36</td>
<td>EE-409</td>
<td>Micro Controllers lab</td>
</tr>
<tr>
<td>37</td>
<td>EE-410</td>
<td>English Communication lab (level –II)</td>
</tr>
</tbody>
</table>

V SEMESTER

<table>
<thead>
<tr>
<th>#</th>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>EE-501</td>
<td>Industrial training (6 months)</td>
</tr>
</tbody>
</table>

VI SEMESTER

<table>
<thead>
<tr>
<th>#</th>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>EE-601</td>
<td>Industrial Management & Entrepreneurship</td>
</tr>
<tr>
<td>40</td>
<td>EE-602</td>
<td>A.C. Machines-II</td>
</tr>
<tr>
<td>41</td>
<td>EE-603</td>
<td>Power Electronics</td>
</tr>
<tr>
<td>42</td>
<td>EE-604(A)</td>
<td>Electrical Utilisation & Automation</td>
</tr>
<tr>
<td></td>
<td>EE-604(B)</td>
<td>Electric Traction & PLC ’s</td>
</tr>
<tr>
<td></td>
<td>EE- 604 (C)</td>
<td>Electric Traction & Renewable Energy Sources.</td>
</tr>
<tr>
<td>43</td>
<td>EE-605</td>
<td>Power System-II</td>
</tr>
<tr>
<td>44</td>
<td>EE-606</td>
<td>A.C. Machine lab-II</td>
</tr>
<tr>
<td>45</td>
<td>EE-607</td>
<td>Power Electronics lab</td>
</tr>
<tr>
<td>46</td>
<td>EE-608</td>
<td>CAD lab</td>
</tr>
<tr>
<td>47</td>
<td>EE-609</td>
<td>Industrial Automation lab</td>
</tr>
<tr>
<td>48</td>
<td>EE-610</td>
<td>English Communication lab(Level –III)</td>
</tr>
</tbody>
</table>
CURRICULUM (C-09) FOR DIPLOMA COURSES IN ANDHRA PRADESH

Salient features

1. Introduced 3 Year Diploma Course with 2 ½ years academic instructions in addition to 6 months industrial training (2 ½ years Academic Instructions & 6 Months Industrial Training).

2. Every Student get benefit of Industrial training, hands on training, Understanding industrial environment and behaviour pattern.

3. Advanced topics not relevant for Diploma level are deleted.

4. Modern topics suitable at Diploma with industrial needs & global scenario are added.

5. More emphasis is laid on communication soft skills and personality development.

6. English language is incorporated as a practical component of a curriculum at Third, Fourth and Sixth semesters.

7. Auto CAD specifically to the electrical branch has been given more emphasis in this curriculum.

8. Every student is exposed to computer lab at First year itself in order to familiarize to key board, Mouse, E-mail, internet etc.,

9. Number of teaching hours allotted to the chapter/topic has been rationalized in view of past experiences.

10. Elective subjects have been introduced at sixth semester enabling the student to choose the subject institution wise.

11. More emphasis is given to practicals by increasing number of practical subjects.

12. Electrical workshop consisting of tools, Soldering and Basic house wiring is introduced.

13. In Elements of electrical engineering some topics which are at higher standard are deleted and semi conductors are introduced.

14. In Electrical circuits some contents which are at higher standard are deleted.

15. Electronics –I (III sem) and Electronics-II (IV sem) are merged as Electronics.

16. IV and V sem Electrical labs are restructured as D.C.Machines lab.

17. Electrical Engg drawing –I (III sem) and Electrical engg drawing-II (V sem) are merged as Electrical engineering drawing and introduced in IV sem.

18. Power systems –I (IV sem) and part of Power systems-III (VI sem) are restructured as power systems-I.

19. Six months industrial training is introduced in V sem.

20. Power systems –Ii (V sem) and part of Power systems-III (VI sem) are restructured as power systems-II.
21. Electives are introduced in VI sem basically consisting of Utilisation and traction merged with PLC / Automation / Renewable energy sources.
22. Electrical measuring instruments along with recent electronic measuring instruments are clubbed as Electrical & Electronic measuring instruments.

General Features:

ENGLISH:

Greater emphasis on communicative language teaching resulting in interactive sessions in English, both during theory and practical classes.

Introduction of practical sessions in III, IV and VI semesters to develop communicative competence.

Practical sessions focus on personality development and team building skills.

Practical sessions aim at developing employability skills.

Co-operative learning techniques used during the process of learning aim at instilling learning skills and developing learner autonomy.

MATHEMATICS:

Bridging of Fundamental Mathematics Introduced:

In the restructured Curriculum C-09, the Subject of Mathematics is designed in such a manner that it starts with a chapter on Bridging of fundamentals in mathematics incorporating 10 periods in the schedule with due Weightage of marks in sessionals as well as end exam for better understanding and to improve the problem solving techniques in mathematics as many of the diploma students lacking skills in above topics.

Three Dimensional Geometry Introduced:

Three dimensional Geometry with basic concepts of Co-ordinates, Planes were introduced with a weightage of 7 periods in the I Year to have better visualizations and imagination of three dimensional views which are required for proper understanding of Engineering Drawings and Designs etc.

Reduced the depth of problems and more focused on Concepts:

To improve the pass percentage, the depth of the problems was reduced and focused more in understanding the basic concepts of mathematics which are required for mathematics to be a supporting subject for having better idea and understanding of the engineering subject treatment.

Deleted Laplace transformations and Fourier Series Topics:
The total weightage for periods for the mathematics subject was reduced to 195 periods from 225 periods by deleting the Laplace Transformations and Fourier Series Topics as they were not necessary for engineering Diploma Students at this level.

Integration Completely Shifted to 3rd semester:

The Topic Integration which is being taught as the last Topic of I year i.e. at the end of I year in Curriculum C-05 is completely shifted to III semester as it is being neglected by many of the students and making them to face problems in understanding the Engineering subjects which requires Integral Calculus for their theoretical basis and treatment. To this effect the total periods for I year Engineering Mathematics was reduced to 120 periods form 150 periods. The Total Periods for 3rd semester Engineering Mathematics –II subject remains as it is, in the Previous Curriculum as 75 periods.

PHYSICS:

As per C 05 Curriculum 120 periods were earmarked for theory and 45 periods were allotted for Practical. In the proposed curriculum C09 the periods for both theory and practical in the Physics subject are suggested as 105 and 45 respectively. The theory periods are inclusive of 15 seminar/tutorial periods to be framed in the Time Table (Weekly) with one seminar period in two weeks.

1. **UNITS AND DIMENSIONS:** In this chapter, the topic rules of writing units is omitted as it is felt not necessary for the students of technician courses.

2. **ELEMENTS OF VECTORS:** In this chapter, the illustrations of parallelogram law of vectors is deleted for the benefit of the students so that they can focus important fundamentals of that chapter.

3. **KINEMATICS:** In this chapter, the equations describing vertical motion are dropped as they are repeated from SSC syllabus

4. **FRICTION:** In this chapter, explanation to kinds of friction is removed as the knowledge of such depth is not essential for technician course students

5. **WORK, POWER AND ENERGY:** In this chapter the topic energy sources is dropped as the same can be taught and studied in their respective subjects of branches

6. **SIMPLE HARMONIC MOTION:** This chapter is totally unchanged as all topics highly important for the students so that the y can be benefited in understanding the applications in industries

7. **HEAT AND THERMODYNAMICS:** In this chapter the topics internal energy and applications of various processes are deleted as the topics are useful to only few diploma courses.

8. **ACOUSTICS / SOUND:** In this chapter the topics Acoustics of buildings is deleted as the topics are useful to only few diploma courses.
9. PROPERTIES OF MATTER: This chapter is newly introduced since the topics are highly helpful in developing the practical skill in their respective branches.

10. ELECTRICITY & MAGNETISM: This chapter is newly introduced in place of Electromagnetism as many topics of electromagnetism are repeated in SSC and the topics of electricity and magnetism, which are included, will create better visualization of their applications in their working places.

11. MODERN PHYSICS: In this chapter the advanced topic Meissner effect is not needed for the technician course students and hence deleted. The concepts of Critical angle and total internal reflection are incorporated for better understanding of optical fibers.

More emphasis is made on teaching fundamental principles of physics which are highly needed for the technician students for developing their practical skill to become successful technicians in future by restructuring the syllabus of physics subject.

PhysicsPracticals:

In view of the restructuring of theory subject Physics, the Practicals suggested under proposed curriculum C-09 are relevant and appropriate to cater to the needs of the students of Diploma level courses. One demonstration experiment Cathode Ray oscilloscope is deleted as it is not included in theory. More over it is beneficial to only students of few courses in particular and not useful for many courses in general. The utility of the fundamentals of physics which are essential for technician courses students can be appreciated in doing the experiments in physics laboratory. A new experiment in magnetism is incorporated in place of Cathode Ray Tube, which is useful to have hands on experience in the applications of Magnetism.

All the practicals suggested are conformity with the principles of physics proposed in the C-09 Curriculum.

CHEMISTRY

Basic topics like Atomic structure, Periodic Table, Chemical Bond and Oxidation-Reduction are included in fundamentals of Chemistry for recapitulation purpose and to make the students understand the Chemistry easily.

Principles of Metallurgy is introduced in this C-09 Curriculum to give Industrial Orientation to the students.

Reverse Osmosis is included in Water Technology since it is a modern method for removal of impurities from water.

Topics like scope and importance of environmental studies, energy resources land resources, forest resources, ecosystem, producers, consumers decomposers, and biodiversity from environmental studies of IV semester (C-05) are added to Chemistry
subject as they are related to Chemistry and to test the students through Board exam instead of in-house exam, which was in practice earlier.

Advanced Topics like Hybridization, Hydrogen Bond, Lead storage battery, which are not required at Diploma level and repetitive Topics like Arrehenius theory of acids and bases etc are deleted from the syllabus.

C-05 Chemistry lab experiments are Industry oriented and relevant. Hence the same syllabus is proposed for C-09 Chemistry lab Curriculum.
CURRICULUM (C-09) FOR DIPLOMA COURSES IN ANDHRA PRADESH

Preamble

The State Board of Technical Education and Training, Andhra Pradesh under the aegis of the Department of Technical Education, Andhra Pradesh generally reviews the Curricula once in every five years. However, recognizing the changing needs as stated by the user industries, the board has decided to bring forward the revision of curriculum by a year. Consequently, the Board with the assistance of the faculty made a thorough assessment of the curricular changes that have to be made. It was felt that there is an urgent need to improve hands-on experience among the students pursuing diploma courses. Further, the urgency of enhancing communication skills in English was also highlighted in the feedback and suggestions made by the user industries. Keeping these in view, a number of meetings and deliberations were held at district and state level, with experts from industry, academia and senior faculty of the department. The new Curricula for the different diploma courses have been designed with the active participation of the members of the faculty teaching in the Polytechnics of Andhra Pradesh. This will be implemented from the academic year 2009-10.

The primary objective of the curricular change is to produce best technicians is the country by correlating growing needs of the industries with the academic input.
Salient Features:

1. Duration of course is modified from 3 years of academic instruction to 2½ years of academic instruction and 6 months of industrial training.

2. Every student will get the benefit of Exposure to industry, hands on training; understand the industrial environment and the behavioural pattern while working in an industry.

3. The Curriculum is prepared on Semester Pattern sandwiched with One semester of Industrial Training at 5th Semester level. However, First Year is maintained as Year-wise pattern.

4. The policy decisions taken at the State and Central level are implemented with regard to environmental science by including relevant topics in Chemistry. This is also in accordance with the Supreme Court guidelines issued in Sri Mehta’s case.

5. Keeping in view the increased need of communication skills which is playing a major role in the success of Diploma Level students in the Industries, emphasis is given for learning and acquiring listening, speaking and writing skills in English. Further as emphasized in the meetings, teaching of the language has been spread over all the three years of the course and special emphasis is also on areas of employability skills.

6. Advanced topics not relevant at diploma level of education are deleted.

7. Modern topics relevant to the needs of the industry and global scenario suitable to be taught at Diploma level are incorporated in the curriculum.

8. AutoCAD specific to the branch has been given more emphasis in the curriculum. Preparing drawings using Computer has been given more importance using CAD softwares.

9. Every student is exposed to the computer lab at the 1st year stage itself in order to familiarize him with skills required for keyboard/mouse operation, internet usage and e-mailing.

10. The number of teaching hours allotted to a particular topic/chapter has been rationalized keeping in view the past experience.

11. Elective subjects have been introduced at the 6th semester stage to enable to study certain subjects of importance/specialization.

12. Upon reviewing the existing C-05 curriculum, it is found that the theory content is found to have more weightage than the Practical content. In the revised C-09 curriculum, more attention is given to the practical content of Laboratories and Workshops, thus strengthening the practical side. Industrial Training has been introduced for One full semester to impart Practical Experience during the course of study itself.

13. With increased emphasis for the student to acquire Practical skills, the course content in all the subjects is thoroughly reviewed. While the course content in certain subjects is reduced, in rest of the subjects the content has been enhanced as per the need of the hour.

14. All Practical subjects are independent of each other and the practice of grouping two or more practical subjects is dispensed with.

15. Curricula of Laboratory and Workshops have been thoroughly revised basing on the suggestions received from the industry, faculty, for better utilization of the equipment available at the Polytechnics. The experiments/exercises that are chosen for the practical sessions are identified to confirm to the field requirements of industry.

16. Industrial Training introduced in V semester is aimed at promoting working in groups/Team building skills through ‘practice-oriented, project based activities’. This helps the student in interacting with people in better interaction of students with Industries, R & D Institutions and other developmental/promotional agencies.
17. The Members of the working group are grateful to Sri L.Prem Chandra Reddy, I.A.S., Commissioner of Technical Education & Chairman, S.B.T.E.T. and Sri Somesh Kumar, I.A.S., for their guidance and valuable inputs in revising, modifying and updating the curriculum.

18. The Members acknowledge with thanks the cooperation and guidance provided by Sri. P.T. Prabhakar, Secretary, State Board of Technical Education and Training, A.P., and other officials of Directorate of Technical Education and the State Board of Technical Education, A.P, experts from industry, academia from the universities and higher learning institutions and all teaching fraternity from the Polytechnics who are directly and indirectly involved in preparation of the curricula.
RULES AND REGULATIONS FOR DIPLOMA COURSES
UNDER THE CURRICULUM – 2009 (C-09)

1. DURATION AND PATTERN OF THE COURSES

All the Diploma programs run at various institutions are of either 3 years or 3½ years duration, with Industrial Training of 6 months / one year, sandwiched between two Semesters of Academic Instruction.

All the Diploma courses are run on year wise pattern in the First year, and the remaining two or two & half years are run in the semester pattern. For all conventional branches, the Industrial Training is placed in the fifth semester. For all other courses, the training will be in the fifth & sixth semesters, and seventh semester will be at the institution. In respect of few courses like Diploma in Electronics with specialization in CP/ CN/ IE/ TV/ BM/ Embedded systems, the training will be in the seventh semester.

2. PROCEDURE FOR ADMISSION IN TO THE DIPLOMA COURSES:

Selection of candidates is governed by the Rules and regulations lay down in this regard from time to time.

i) Candidates who wish to seek admission in any of the Diploma courses will have to appear for common entrance examination (CEEP) conducted by the State Board of Technical Education and Training, Andhra Pradesh, Hyderabad.

Only the candidates satisfying the following requirements will be eligible to appear for the Common Entrance Examination (CEEP).

a) The candidates seeking admission should have appeared for the X class examination, conducted by the Board of Secondary Examination, Andhra Pradesh or equivalent examination thereto, at the time of making application to the Common Entrance Examination for Polytechnics (CEEP). In case candidates who apply pending results of their qualifying examinations, their selection shall be subject to production of proof of their passing the qualifying examination in one attempt or compartmentally at the time of interview for admission.

b) Admissions are made based on the merit obtained in the Common Entrance Examination (CEEP) and the reservation rules stipulated by the Government of Andhra Pradesh from time to time.

c) For admission into the following Diploma Courses for which entry qualification is 10+2, candidates need not appear for CEEP. A separate notification will be issued for admission into these courses.

1). D.H.M.C.T. 2). D.Pharmacy

3. MEDIUM OF INSTRUCTION

The medium of instruction and examination shall be English.

4. NUMBER OF WORKING DAYS PER SEMESTER / YEAR:

a). The Academic year for all the Courses shall be from Fifteenth June of the year of admission to the 31st March of the succeeding year.

b). The Working days in a week shall be from Monday to Saturday

c). There shall be 7 periods of 50 minutes duration on all working days.

d). The minimum number of working days for each semester / year shall be 90 / 180 days excluding examination days. If this prescribed minimum is not achieved due to any reason, special arrangements shall be made to conduct classes to cover up the curriculum.
5. **ELIGIBILITY OF ATTENDENCE TO APPEAR FOR THE END EXAMINATION**

a). A candidate shall be permitted to appear for the end examination in all subjects, if he or she has attended a minimum of 75% of working days during the year/Semester.

b). Condonation of shortage of attendance in aggregate up to 10% (65% and above and below 75%) in each semester or 1st year may be granted on medical grounds.

c). Candidates having less than 65% attendance shall be detained.

d). Students whose shortage of attendance is not condoned in any semester / 1st year are not eligible to take their end examination of that class and their admissions shall stand cancelled. They may seek re-admission for that semester / 1st year when offered next.

e). A stipulated fee shall be payable towards condonation of shortage of attendance.

6. **READMISISON**

 Readmission shall be granted to eligible candidates by the respective RJD’s / Principals

1) Within 15 days after commencement of class work in any semester (Except industrial Training)

2) Within 30 days after commencement of class work in any year (including D.Pharmacy course or first year course in Engineering and Non Engineering Diploma streams)

 Otherwise such cases shall not be considered for readmission for that semester / year and are advised to seek readmission in the next subsequent eligible academic year.

 The percentage of attendance of the readmitted candidates shall be calculated from the first day of beginning of the regular class work for that year / Semester, as officially announced by CTE/ SBTET but not form the day on which he/she has actually reported to the class work, after readmission is granted.

7. **SCHEME OF EXAMINATION**

THEORY EXAMINATION: Each Subject carries 80% marks with examination of 3 hours duration, along with 20% marks for internal evaluation. (Sessional marks). However, there are no minimum marks prescribed for sessionals.

PRACTICAL EXAMINATION: There shall be 40% Marks for regular practical work done, i.e. sessional marks for each practical subject with an end examination of 3 hours duration carrying 60% marks. However, there are no minimum marks prescribed for sessionals.

8. **INTERNAL ASSESSMENT SCHEME**

a) Theory Subjects: Theory Subjects carry 20% sessional marks.

 Internal examinations will be conducted for awarding sessional marks on the dates specified. Four unit tests will be conducted for I year students and two for semesters. Average marks obtained in all the tests will be considered for awarding the sessional marks.

b) Practicals: Student’s performance in Laboratories / Workshop shall be assessed during the year of study for 40% marks in each practical subject. Allotment of marks should be discrete taking into consideration the students skills, accuracy, recording and performance of the task assigned to him / her. Each student has to write a record / log book for assessment purpose. In the subject of Drawing, which is also considered as a practical paper, the same rules hold good. Drawing exercises are to be filed in seriatum.

c) Internal assessment in Labs / workshops / Survey field etc., during the course of study shall be done and sessional marks awarded by Lecturer / Senior Lecturer / Workshop superintendent as the case may be.
d) For practical examinations, except in drawing, there shall be two examiners. External examiner shall be appointed by the Principal in consultation with respective head of the department preferably choosing a person from an Industry. Internal examiner shall be the person concerned with internal assessment as in (c) above. For drawing the end examination shall be held along with all theory papers.

e) Question Paper for Practicals: Question paper should cover all the experiments / exercise prescribed.

f) Records pertaining to internal assessment marks of both theory and practical subjects are to be maintained for official inspection.

g) In case of Industrial Training, the training assessment shall be done and marks be awarded in the following manner. A final decision in this regard would be taken before the end of Academic Year 2009-10.

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial assessment</td>
<td>600</td>
</tr>
<tr>
<td>Maintenance of log book</td>
<td>50</td>
</tr>
<tr>
<td>Record Work</td>
<td>50</td>
</tr>
<tr>
<td>Seminar / viva-voce</td>
<td>50</td>
</tr>
<tr>
<td>TOTAL</td>
<td>750</td>
</tr>
</tbody>
</table>

The assessment at the institute level will be done by a minimum of three faculty members including H.O.D. and be averaged.

9. **MINIMUM PASS MARKS**

THEORY EXAMINATION:

For passing a theory subject, a candidate has to secure a minimum of 35% in end examination and a combined minimum of 35% of both Sessional and end examination marks put together.

PRACTICAL EXAMINATION:

For passing a practical subject, a candidate has to secure, a minimum of 50% in end examination and a combined minimum of 50% of both sessional and practical examination marks put together. In case of D.C.C.P., the pass mark for typewriting and shorthand subjects of D.C.C.P course.

10. **PROVISION FOR IMPROVEMENT**

1. Improvement is allowed only after he / she has completed all the subjects from First Year to Final semester of the Diploma.
2. Improvement is allowed in any 4 (Four) subjects of the Diploma.
3. The student can avail of this improvement chance only once, that too within the succeeding two examinations after the completion of Diploma, with the condition that the duration including betterment examination shall not exceed **FIVE** years from the first admission.
4. No improvement is allowed in Practical / Lab subjects or Project work or Industrial Training assessment. However, improvement is allowed in drawing subject.
5. If improvement is not achieved, the marks obtained in previous Examinations hold good.
6. Improvement is not allowed in respect to the candidates who are punished under Mal-practice in any Examination.
7. Examination fee for improvement shall be paid as per the notification issued by State Board of Technical Education and Training from time to time.
8. All the candidates who wish to appear for improvement of performance shall deposit the original Marks Memos of all the years / Semesters and also original Diploma Certificate to the Board. If there is improvement in performance of the current examination, the revised Memorandum of marks and Original Diploma Certificate will be issued else the submitted originals will be returned.

11. RULES OF PROMOTION FROM 1ST YEAR TO 3rd, 4th, 5th, 6th and 7th SEMESTERS:

For Diploma Courses of 3 years duration
1. A candidate shall be permitted to appear for first year examination provided he / she puts in 75% attendance (which can be condoned on Medical grounds upto 10%) i.e. attendance after condonation on Medical grounds should not be less than 65% and pay the examination fee.

2. A candidate shall be promoted to 3rd semester if he/she puts the required percentage of attendance in the first year and pays the examination fee. A candidate who could not pay the first year examination fee has to pay the promotion fee as prescribed by State Board of Technical Education and Training from time to time before commencement of 3rd semester.

3. A candidate shall be promoted to 4th semester provided he/she puts the required percentage of attendance in the 3rd semester and pay the examination fee. A candidate who could not pay the 3rd semester exam fee, has to pay the promotion fee as prescribed by State Board of Technical Education and Training from time to time before commencement of 4th semester.

A candidate is eligible to appear for the 4th semester exam if he/she
 i) Puts the required percentage of attendance in the 4th semester
 ii) Should not have failed in more than Four backlog subjects of 1st year

4. A candidate shall be promoted to 5th semester (Industrial Training) provided he / she puts the required percentage of attendance in the 4th semester and pays the examination fee. A candidate, who could not pay the 4th semester examination fee, has to pay the promotion fee as prescribed by State Board of Technical Education and Training from time to time before commencement of 5th semester.

 A candidate is eligible to appear for 5th semester Industrial Assessment, if he/she
 i) Puts the required percentage of attendance(90%) in 5th semester and
 ii) Should have obtained the eligibility to appear for 4th semester examination

5. A candidate shall be promoted to 6th semester provided he/she has successfully completed Industrial Training (Passed) and he / she puts the required percentage of attendance in the 5th semester and pay the industrial assessment fee. A candidate, who could not pay the 5th semester industrial assessment fee, has to pay the promotion fee as prescribed by State Board of Technical Education and Training from time to time before commencement of 6th semester.

A candidate is eligible to appear for 6th semester examination if he/she
 i) Puts the required percentage of attendance in 6th semester and
 ii) Should not have failed in more than six backlogs subjects of 1st year, 3rd & 4th semesters put together.
 iii) Should not have failed in more than Six backlog subjects of 3rd and 4th semesters put together for IVC students.

d) For Diploma Courses of 3 ½ Years duration:
 i) MET/ CH/ CHPP/ CHPC/ CHOT/ TT/ SM
1. A candidate shall be permitted to appear for 1st year examination provided he / she puts in 75% attendance (which can be condoned on Medical grounds upto 10%) i.e. attendance after condonation on Medical grounds should not be less than 65% and pay the examination fee.

2. A candidate shall be promoted to 3rd semester if he/she puts the required percentage of attendance in the 1st year and pays the examination fee. A candidate who could not pay the 1st year examination fee has to pay the promotion fee as prescribed by State Board of Technical Education and Training from time to time before commencement of 3rd semester.

3. A candidate shall be promoted to 4th semester provided he/she puts the required percentage of attendance in the 3rd semester and pay the examination fee. A candidate who could not pay the 3rd semester exam fee, has to pay the promotion fee as prescribed by State Board of Technical Education and Training from time to time before commencement of 4th semester.

4. A candidate shall be promoted to 5th semester provided he / she puts the required percentage of attendance in the 4th semester and pays the examination fee. A candidate, who could not pay the 4th semester examination fee, has to pay the promotion fee as prescribed by State Board of Technical Education and Training from time to time before commencement of 5th semester.

5. Promotion from 5th to 6th semester is automatic (i.e., from 1st spell of Industrial Training to 2nd spell) provided he/she puts the required percentage of attendance, which in this case would be 90% attendance and attends for the VIVA-VOCE examination at the end of training.

A candidate shall be promoted to 7th semester of the course provided he/she has successfully completed both the spells of Industrial Training (Passed).

5. A candidate is eligible to appear for 7th semester examination if he/she
 (i) Puts the required percentage of attendance in the 7th semester and
 (ii) Should not have failed in more than 6 backlog subjects of 1st year, 3rd and 4th semesters put together.
 (iii) Should not have failed in more than Six backlog subjects of 3rd and 4th semester put together for IVC students.

 ii) **DIPLOMA IN FOOTWEAR TECHNOLOGY:**

In respect of Diploma in Footwear Technology, the Industrial training is offered in two spells, the 1st spell of Industrial training after the First Year (i.e III Semester of the course) and the second spell of Industrial training after the V Semester (i.e VI Semester of the course). The promotion rules for this course are on par with the other sandwich Diploma courses except that there is no restriction on number of backlog subjects to get eligibility to appear for the 4th semester examination and

A candidate is eligible to appear for 5th semester examination if he / she

1. Puts the required percentage of attendance in the 5th semester and

2. Should not have failed in more than four subjects of 1st year.

OTHER DETAILS

a) In case a candidate does not successfully complete the Industrial training, he / she will have to repeat the training at his / her own cost.

b) The I spell of Industrial training shall commence 10 days after the completion of the last theory examination of 4th Semester.

c) The Second spell of Industrial training shall commence within 10 days after the completion of I spell of Industrial training.

d) Each Semester of Institutional study shall be a minimum of 90 working days. (With 6 working days in a week i.e. from Monday to Saturday, with 7 periods of 50 minutes, duration per day.)
12. **STUDENTS PERFORMANCE EVALUATION**

Successful candidates shall be awarded the Diploma under the following divisions of pass.

1. First Class with Distinction shall be awarded to the candidates who secure an overall aggregate of 75% marks and above.
2. First Class shall be awarded to candidates who secure overall aggregate of 60% marks and above and below 75% marks.
3. Second Class shall be awarded to candidates who secure a pass with an overall aggregate of below 60%.

The Weightage of marks for various year/Semesters which are taken for computing overall aggregate shall be 25% of 1st year marks + 100% of 3rd and subsequent Semesters.

With respect to the intermediate vocational candidates who are admitted directly into diploma course at the 3rd semester (i.e., second year) level the aggregate of (100%) marks secured at the 3rd and subsequent semesters levels of study shall alone be taken into consideration for determining the over all percentage of marks secured by the candidates for award of class/division.

4. Second Class shall be awarded to all students, who fail to complete the Diploma in the regular three years and four subsequent examinations, from the first admission.

13. **EXAMINATION FEE SCHEDULE:**

The examination fee should be as per the notification issued by State Board of Technical Education and Training from time to time.

14. **STRUCTURE OF END EXAMINATION QUESTION PAPER**

The question paper for theory examination is patterned in such a manner that the Weightage of periods/marks allotted for each of the topics for a particular subject be considered.

Examination paper is of 3/6/9 hour’s duration.

a) Each theory paper consists of Section ‘A’ and Section ‘B’. Section ‘A’ contains 10 short answer questions. All questions are to be answered and each carries 3 marks Max. Marks: 10 x 3 = 30.

Section B contains 8 essay type questions including Numerical questions, out of which 5 questions each carrying 10 marks are to be answered.
Max. Marks: 5 x 10 = 50.
Total Maximum Marks: 80

b) For Engineering Drawing Subject (107) consist of section ‘A’ and section ‘B’. Section ‘A’ contains four (4) questions. All questions in section ‘A’ are to be answered and each carries 5 marks. Max. Marks: 4 x 5=20. Section ‘B’ contains six (6) questions. Out of which four (4) questions to be answered and each question carries 10 Marks. Max. Marks 4 x 10 = 40.

Practical Examinations

For Workshop practice and Laboratory Examinations,
Each student has to pick up a question paper distributed by Lottery System.
Max. Marks for an experiment / exercise: 50%
Max. Marks for VIVA-VOCE: 10%
Total: 60%
In case of practical examinations with 50 marks, the marks will be worked out basing on the above ratio.
In case of any change in the pattern of question paper, the same shall be informed sufficiently in advance to the candidates.

15. **ISSUE OF MEMORANDUM OF MARKS**
 All candidates who appear for the end examination will be issued memorandum of marks without any payment of fee. However candidates who lose the original memorandum of marks have to pay the prescribed fee to the Secretary, State Board of Technical Education and Training, A.P. for each duplicate memo.

16. **MAXIMUM PERIOD FOR COMPLETION OF DIPLOMA COURSES**
 Maximum period for completion of the course is twice the duration of the course from the date of First admission (includes the period of detention and discontinuation of studies by student etc) failing which they will have to forfeit the claim for qualifying for the award of Diploma (They will not be permitted to appear for examinations after that date). This rule applies for all Diploma courses of 3 years and 3 ½ years of engineering and non-engineering courses.

17. **ELIGIBILITY FOR AWARD OF DIPLOMA**
 A candidate is eligible for award of Diploma Certificate if he / she fulfils the following academic regulations.

i. He / She pursued a course of study for not less than 3 / 3 ½ academic years & not more than 6 / 7 academic years.

ii. He / she has completed all the subjects.

 Students who fail to fulfill all the academic requirements for the award of the Diploma within 6 / 7 academic years from the year of admission shall forfeit their seat in the course & their seat shall stand cancelled.

18. **RECOUNTING, ISSUE OF XEROX COPY OF VALUED ANSWER SCRIPT & REVERIFICATION:**
 (a) A candidate desirous of applying for Recounting/ issue of Xerox copy of valued answer scripts/ Reverification should submit the application to the Secretary, State Board of Technical Education and Training, A.P., Hyderabad – 500 063 within 15 days from the date of receipt of Tabulated Marks Statement by the Principal of concerned Polytechnic or the date specified.

 Recounting shall be done for any TWO theory subjects per Year/Semester only, including drawing subjects. No request for recounting shall be entertained from any candidate who is reported to have resorted to Malpractice in that examination. The fee prescribed for Recounting should be paid by way of Demand Draft drawn on any Scheduled Bank payable at Hyderabad in favour of the Secretary, State Board of Technical Education and Training, A.P., Hyderabad. The verification of the totaling will be done by an Officer of the Board and will be intimated to the candidate by post only.

 The following documents should be invariably be enclosed with the application failing which the application will not be considered.

 (i) Marks secured as per Tabulated Marks Sheet certified by the Principal.

 (ii) Demand draft towards the payment of fee

 (iii) Self – addressed and stamped envelopes of 11” X 5” size.
The applications received after the prescribed date will not be accepted and any correspondence in this regard will not be entertained.

b) FOR ISSUE OF XEROX COPIES OF VALUED ANSWER SCRIPTS
1. A candidate desirous of applying for Xerox copy of valued answer script/ scripts should submit the application to the Secretary, State Board of Technical Education and Training, A.P., Hyderabad – 500 063 along with the required fee in the form of Demand Draft within 07 days from the date of receipt of Tabulated Marks Statement by the Principal of concerned Polytechnic or the date specified in the covering letter which ever is earlier.
2. Xerox copies of valued answer scripts will be issued to all theory subjects including drawing subjects.
3. The following documents should invariably be enclosed with the application
 (1) Marks secured as per Tabulated Marks Sheets certified by the Principal
 (2) Self-addressed Stamped Envelope/Cloth-line cover of size 10’’ x 14’’.
 (3) Fee in the form of Demand Draft.

c) FOR RE-VERIFICATION OF THE VALUED ANSWER SCRIPT
1. A candidate desirous of applying for Re-verification of valued answer script should submit the application to the Secretary, State Board of Technical Education and Training, A.P., Hyderabad – 500 063 along with the required fee in the form of Demand Draft, within 15 days from declaration of result.
2. Re-verification of valued answer script shall be done for all theory subjects including drawing subjects.
3. The following documents should invariably be enclosed with the application failing which the application will not be considered.
 (i) Marks secured as per Tabulated Marks Sheets certified by the Principal.
 (ii) Fee in the form of Demand Draft.

19. MAL PRACTICE CASES:

If any candidate resorts to any Mal Practice during examinations, he / she shall be booked and the Punishment shall be awarded as per rules and regulations framed by SBTET from time to time.

20. DISCREPANCIES/ PLEAS:

Any Discrepancy /Pleas regarding results etc., shall be represented to the Board within one month from the date of issue of results. Thereafter, no such cases shall be entertained in any manner.

21. ISSUE OF DUPLICATE DIPLOMA

If a candidate loses his/her original Diploma Certificate and desires a duplicate to be issued he/she should produce written evidence to this effect. He / she may obtain a duplicate from the Secretary, State Board of Technical Education and Training, A.P., on payment of prescribed fee and on production of an affidavit signed before a First Class Magistrate (Judicial) and non traceable certificate from the Department of Police. In case of damage of original Diploma Certificate, he / she may obtain a duplicate certificate by surrendering the original damaged certificate on payment of prescribed fee to the State Board of Technical Education and Training.

In case the candidate cannot collect the original Diploma within 1 year from the date of issue of the certificate, the candidate has to pay the penalty prescribed by the SBTET from time to time.
22. **PERMANENT IDENTIFICATION NUMBER (PIN)**

A cumulative / academic record is to be maintained of the Marks secured in sessional work and end examination of each year for determining the eligibility for promotion etc., a Permanent Identification Number (PIN) will be allotted to each candidate so as to facilitate this work and avoid errors in tabulation of results.

23. **ISSUE OF MIGRATION CERTIFICATE AND TRANSCRIPTS:**

The Board on payment of prescribed fee will issue these certificates for the candidates who intend to prosecute Higher Studies in India or Abroad.

24. **GENERAL**

i. The Board may change or amend the academic rules and regulations or syllabi at any time and the changes or amendments made shall be applicable to all the students, for whom it is intended, with effect from the dates notified by the competent authority.

ii. All legal matters pertaining to the State Board of Technical Education and Training are within the jurisdiction of Hyderabad.

iii. In case of any ambiguity in the interpretation of the above rules, the decision of the Secretary, SBTET is final.

iv. The Board is actively contemplating introduction of Grading system instead of awarding marks, in C-09 scheme, from the academic year 2009-10. The details are being worked out. As soon as the Grading system is adopted, the rules pertaining to Scheme of Examination (Rule 7), Internal assessment scheme (Rule 8), Minimum pass marks (Rule 9), Rules of Promotion (Rule 11), Students performance evaluation (Rule 12), Issue of memorandum of marks (Rule 15), Rule 18 etc., shall also be modified.
DIPLOMA IN ELECTRICAL & ELECTRONICS ENGINEERING

SCHEME OF INSTRUCTIONS AND EXAMINATION

CURRICULUM-2009 (FIRST YEAR)

<table>
<thead>
<tr>
<th>Sub Code</th>
<th>Name of the Subject</th>
<th>Instruction Periods/Week</th>
<th>Total Periods Per Year</th>
<th>Scheme Of Examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thy</td>
<td></td>
<td>Thy</td>
</tr>
<tr>
<td>THEORY SUBJECTS</td>
<td></td>
<td></td>
<td></td>
<td>Thy</td>
</tr>
<tr>
<td>EE-101</td>
<td>English</td>
<td>2</td>
<td>-</td>
<td>60</td>
</tr>
<tr>
<td>EE-102</td>
<td>Engineering Mathematics - I</td>
<td>5</td>
<td>-</td>
<td>150</td>
</tr>
<tr>
<td>EE-103</td>
<td>Engineering Physics</td>
<td>4</td>
<td>-</td>
<td>120</td>
</tr>
<tr>
<td>EE-104</td>
<td>Engineering Chemistry and Environmental Studies</td>
<td>4</td>
<td>-</td>
<td>120</td>
</tr>
<tr>
<td>EE-105</td>
<td>Basic Electrical Engineering</td>
<td>6</td>
<td>-</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Thy</td>
</tr>
</tbody>
</table>

THEORY SUBJECTS				Thy				
EE-106	Mechanical Workshop	3	3	90	3	40	60	100
EE-107	Engineering Drawing	6	3	180	3	40	60	100
EE-108	Physics Laboratory	3*	90	3	20	30	50	
EE-109	Chemistry Laboratory	3	20	30	50			
EE-110	Information Technology Lab	4	120	3	40	60	100	
EE-111	Electrical Workshop	3	90	3	40	60	100	
	Group Task / Seminar	2	60	-	-	-	-	
	Total	21	21	1260	-	300	700	1000

*Half the class will go to EE-108 and the other half will go to EE-109. Next week vice-versa.
DIPLOMA IN ELECTRICAL & ELECTRONICS ENGINEERING
SCHEME OF INSTRUCTIONS AND EXAMINATION
CURRICULUM-2009
(III Semester)

<table>
<thead>
<tr>
<th>Sub Code</th>
<th>Name of the Subject</th>
<th>Instruction Periods/Week</th>
<th>Total Periods Per Semester</th>
<th>Scheme Of Examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Duration (hrs)</td>
</tr>
<tr>
<td>EE-301</td>
<td>Engineering Mathematics –II</td>
<td>4</td>
<td>60</td>
<td>3</td>
</tr>
<tr>
<td>EE-302</td>
<td>Electrical Circuits</td>
<td>5</td>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td>EE-303</td>
<td>D.C.Machines & Batteries</td>
<td>5</td>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td>EE-304</td>
<td>Electrical & Electronic Measuring Instruments</td>
<td>4</td>
<td>60</td>
<td>3</td>
</tr>
<tr>
<td>EE-305</td>
<td>Electronics</td>
<td>6</td>
<td>90</td>
<td>3</td>
</tr>
</tbody>
</table>

THEORY SUBJECTS

PRACTICAL SUBJECTS

<table>
<thead>
<tr>
<th>Sub Code</th>
<th>Name of the Subject</th>
<th>Instruction Periods/Week</th>
<th>Total Periods Per Semester</th>
<th>Scheme Of Examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Duration (hrs)</td>
</tr>
<tr>
<td>EE-306</td>
<td>D.C.Machines Lab</td>
<td>3</td>
<td>45</td>
<td>3</td>
</tr>
<tr>
<td>EE-307</td>
<td>Electrical Measurements lab</td>
<td>3</td>
<td>45</td>
<td>3</td>
</tr>
<tr>
<td>EE-308</td>
<td>Electrical Wiring Lab</td>
<td>3</td>
<td>45</td>
<td>3</td>
</tr>
<tr>
<td>EE-309</td>
<td>Electronics lab</td>
<td>6</td>
<td>90</td>
<td>3</td>
</tr>
<tr>
<td>EE-310</td>
<td>English Communication lab level-1</td>
<td>3</td>
<td>45</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>24</td>
<td>18</td>
<td>630</td>
</tr>
</tbody>
</table>
DIPLOMA IN ELECTRICAL & ELECTRONICS ENGINEERING
SCHEME OF INSTRUCTIONS AND EXAMINATION CURRICULUM-2009
(IVIV)

<table>
<thead>
<tr>
<th>Sub Code</th>
<th>Name of the Subject</th>
<th>Instruction Periods/Week</th>
<th>Total Periods Per Semester</th>
<th>Scheme Of Examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Duration (hrs)</td>
</tr>
<tr>
<td>EE-401</td>
<td>A.C. Machines – I</td>
<td>5</td>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td>EE-402</td>
<td>Power Systems – I</td>
<td>6</td>
<td>90</td>
<td>3</td>
</tr>
<tr>
<td>EE-403</td>
<td>Electrical Installation & Estimation</td>
<td>4</td>
<td>60</td>
<td>3</td>
</tr>
<tr>
<td>EE-404</td>
<td>Digital Electronics & Micro Controllers</td>
<td>5</td>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td>EE-405</td>
<td>General Mechanical Engg</td>
<td>5</td>
<td>75</td>
<td>3</td>
</tr>
</tbody>
</table>

THEORY SUBJECTS

<table>
<thead>
<tr>
<th>Prac Code</th>
<th>Name of the Subject</th>
<th>Instruction Periods/Week</th>
<th>Total Periods Per Semester</th>
<th>Scheme Of Examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-406</td>
<td>A.C. Machines Lab-I</td>
<td>-</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td>EE-407</td>
<td>Electrical Engg Drawing</td>
<td>-</td>
<td>6</td>
<td>90</td>
</tr>
<tr>
<td>EE-408</td>
<td>Digital Electronics lab</td>
<td>-</td>
<td>3*</td>
<td>45</td>
</tr>
<tr>
<td>EE-409</td>
<td>Micro controllers lab</td>
<td>-</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>EE-410</td>
<td>English Communication Lab Level – II</td>
<td>-</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Group Task / Seminar</td>
<td>-</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>25</td>
<td>17</td>
<td>630</td>
</tr>
</tbody>
</table>

*Half the class will go to EE-408 and the other half will go to EE-409. Next week vice-versa.
EE-501 INDUSTRIAL TRAINING
(Practical Training)

V SEMESTER

<table>
<thead>
<tr>
<th>S.NO</th>
<th>Subject</th>
<th>Duration</th>
<th>Items</th>
<th>Max Marks</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Practical Training in the Industry</td>
<td>6 Months</td>
<td>1. First Assessment (at the end of 2nd month)</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Second Assessment (at the end of 4th month)</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Final Assessment (at the end of spell)</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4. Log Book & Record</td>
<td>100</td>
<td>50 Marks Each</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5. Seminar</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL PER SEMESTER 750

The industrial training shall carry 750 marks and pass marks is 50%. A candidate failing to secure the minimum marks should complete it at his own expenses.

During Industrial training the candidate shall put in a minimum of 90% attendance.
DIPLOMA IN ELECTRICAL & ELECTRONICS ENGINEERING
SCHEME OF INSTRUCTIONS AND EXAMINATION
CURRICULUM-2009
(VIVI
<table>
<thead>
<tr>
<th>Sub Code</th>
<th>Name of the Subject</th>
<th>Instruction Periods/Week</th>
<th>Total Periods Per Semester</th>
<th>Scheme Of Examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Theor y</td>
<td>Pract icals</td>
<td>Durati on (hrs)</td>
</tr>
<tr>
<td>EE-601</td>
<td>Industrial Management and Entrepreneurship</td>
<td>5</td>
<td>-</td>
<td>75</td>
</tr>
<tr>
<td>EE-602</td>
<td>A.C.Machines -II</td>
<td>5</td>
<td>-</td>
<td>75</td>
</tr>
<tr>
<td>EE-603</td>
<td>Power Electronics</td>
<td>5</td>
<td>-</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Elective :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrical Utilisation & Automation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electric traction & PLC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electric traction & Renewable energy sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE-604(A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power Systems - II</td>
<td>5</td>
<td>-</td>
<td>75</td>
</tr>
</tbody>
</table>

THEORY SUBJECTS

PRACTICAL SUBJECTS

<table>
<thead>
<tr>
<th>Sub Code</th>
<th>Name of the Subject</th>
<th>Instruction Periods/Week</th>
<th>Total Periods Per Semester</th>
<th>Scheme Of Examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Theor y</td>
<td>Pract icals</td>
<td>Durati on (hrs)</td>
</tr>
<tr>
<td>EE-606</td>
<td>A .C. Machines Lab – II</td>
<td>-</td>
<td>6</td>
<td>90</td>
</tr>
<tr>
<td>EE-607</td>
<td>Power Electronics Lab</td>
<td>-</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td>EE-608</td>
<td>CAD Lab</td>
<td>-</td>
<td>3*</td>
<td>45</td>
</tr>
<tr>
<td>EE-609</td>
<td>Industrial Automation Lab</td>
<td>-</td>
<td>3*</td>
<td>45</td>
</tr>
<tr>
<td>EE-610</td>
<td>English Communication skills Laboratory Level - III</td>
<td>-</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Group Task / Seminar</td>
<td>-</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>25</td>
<td>17</td>
<td>630</td>
</tr>
</tbody>
</table>
*Half the class will go to EE-608 and the other half will go to EE-609. Next week vice-versa.

1ST YEAR
ENHANCING ENGLISH AND EMPLOYABILITY SKILLS

Subject Title : Enhancing English and Employability Skills
Subject code : EE-101
Periods / Week : 2
Periods / Year : 60

<table>
<thead>
<tr>
<th>S.No</th>
<th>Major Topics</th>
<th>No. of Periods</th>
<th>Weightage of marks</th>
<th>No. of Short questions</th>
<th>No. of Essay questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>FUNCTIONAL ENGLISH</td>
<td>10</td>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>SITUATIONAL GRAMMAR</td>
<td>19</td>
<td>31</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>3.</td>
<td>THE ART OF READING</td>
<td>18</td>
<td>33</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>THE CRAFT OF WRITING</td>
<td>13</td>
<td>33</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>60</td>
<td>110</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>

INTRODUCTION:

Globalisation has made English language the need of the hour. Indian professionals are in great demand around the world. In this backdrop, English is felt as a bridge to make Polytechnic students employable soon after obtaining their Diploma Certificate.

In C-09 curriculum, the focus is on enhancing the students, communicative abilities as well as job-ready skills.

OBJECTIVES:

On completion of this course, the students should be able to

- Become communicatively competent
- Write and speak English confidently
- Read, listen and understand all kinds of communication
- Learn the modern methods of communication such as sending receiving emails
- Use English at social milieu or at work place
COURSE CONTENTS:

1. Functional English

 Need analysis Using a
dictionary Introducing self
/ others Describing objects
Vocabulary building
Sounds and syllables
Sentence structures

2. Situational Grammar

 Tense and Time
 Present, Past and Future Tenses
 Concord
 Yes/No, Wh-questions and Question Tags
 Voice
 Reported Speech
 Linkers
 Error Analysis

3. Art of Reading

 Note Taking
 Note Making and Summarising
 Preparing for Examination
 Enhancing Vocabulary through reading
 Reading for Pleasure
 Reading Strategies
 Drawing Inferences

4. Craft of Writing

 Mechanics of Writing
 Paragraph Writing Persuasive
 Writing Effective
 Correspondence E-mail
 Resume
ENGINEERING MATHEMATICS – I
(Common Subject)

Subject title: Engineering Mathematics -I
Subject code: EE - 102
Periods per week: 05
Total periods per Year: 150

TIME SCHEDULE

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Major Topics</th>
<th>No. of Periods</th>
<th>Weightage of Marks</th>
<th>Short Type</th>
<th>Essay Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unit- I - Bridging of fundamentals In mathematics</td>
<td>12</td>
<td>06</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Unit -II-Algebra Matrices</td>
<td>15</td>
<td>10</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Partial Fractions</td>
<td>05</td>
<td>03</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Unit-III-Trigonometry Compound Angles</td>
<td>05</td>
<td>03</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Multiple and Sub-multiple angles</td>
<td>05</td>
<td>03</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Transformations</td>
<td>06</td>
<td>05</td>
<td>-</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>7</td>
<td>Inverse Trigonometric Functions</td>
<td>05</td>
<td>05</td>
<td>-</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>8</td>
<td>Trigonometric Equations</td>
<td>05</td>
<td>05</td>
<td>-</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>9</td>
<td>Properties of Triangles and Solution of Triangles</td>
<td>08</td>
<td>05</td>
<td>-</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>10</td>
<td>Complex Numbers</td>
<td>06</td>
<td>03</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>Unit- IV Co- ordinate Geometry Straight Lines</td>
<td>02</td>
<td>03</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>Circles</td>
<td>05</td>
<td>03</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>Elements of Conics</td>
<td>01</td>
<td>00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>Parabola</td>
<td>05</td>
<td>05</td>
<td>-</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>15</td>
<td>Ellipse</td>
<td>05</td>
<td>05</td>
<td>-</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>16</td>
<td>Hyperbola</td>
<td>05</td>
<td>05</td>
<td>-</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>17</td>
<td>Three Dimensional Geometry</td>
<td>08</td>
<td>05</td>
<td>-</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>18</td>
<td>Unit-V: Differential Calculus Limits</td>
<td>05</td>
<td>03</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>Methods of Differentiation</td>
<td>20</td>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>Unit-VI Applications of the Derivative Geometrical Applications</td>
<td>06</td>
<td>05</td>
<td>-</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>21</td>
<td>Physical Applications</td>
<td>06</td>
<td>05</td>
<td>-</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>22</td>
<td>Maxima and Minima</td>
<td>06</td>
<td>05</td>
<td>-</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>23</td>
<td>Errors and Approximations</td>
<td>04</td>
<td>05</td>
<td>-</td>
<td>$\frac{1}{2}$</td>
</tr>
</tbody>
</table>

Total: 150
110
10
8
Objectives:

Unit-1.Bridging of fundamentals in Mathematics:

1.1 Explain the bracket operations such as \(a \ b \ c \ d, \frac{1}{2} m \{ \frac{1}{2} m \ m \} \) etc.

1.2 Explain the ratios and properties such as componendo, dividendo, Componendo and dividendo rules such as

\[
\frac{a}{c} - \frac{a}{d} = \frac{b}{c} - \frac{b}{d} \quad \text{(Componendo)}
\]

\[
\frac{a}{c} - \frac{a}{d} = \frac{b}{d} - \frac{b}{d} \quad \text{(Dividendo)}
\]

Also explain the variation concept (direct and inverse) such as

\[x \ \text{varies as } \frac{x}{y} \ \text{constant}, \ x \ \text{varies inversely as } y \quad xy=\text{constant}. \]

Solve simple problems.

1.3. Explain Literal Values and Literal Coefficients. Solve simple problems such as

\[p \ 2a \ 3b, \ q \ 3b-4c, \ r \ 5a-2b \ \text{find} \ 3p \ 2q \ 5r. \]

multiply \(p \) with \(q \) and *divide* \(p \) by \(q \) when \(p \ 2x^2 \ 3x \ 4 \) and \(q \ 3x-1 \)

1.4. Explain the procedure of Handling Vulgar fractions such as

\[
\frac{2x}{x-4}, \ \frac{4}{2x}, \ \frac{2}{1x} \quad \text{etc.}
\]

1.4.1 Explain the formulae for basic algebraic identities in the form of forward and backward applications like

\[a \ b \ 2 \quad a^2 \ b^2 \ 2ab \quad \text{and also} \quad a^2 \ b^2 \ ab \quad a \ b \ 2 \ 3ab \quad \text{or} \quad a \ b \ 2 \ ab. \]

And also express \(x^2 \ 3x \ 5 \ \text{in the form of} \quad x \ \frac{3}{2} \ 2 \ \sqrt{1} \ 2 \ \text{etc.} \)

1.6 Explain the functional notation \(y = f(x), \ z = f(x,y) \) and \(u = f(x,y,z) \) with simple illustrative examples and their evaluation. Also explain the definition of a function classically as \(f: A \rightarrow B. \) Domain, Range, interval as subset of set of real numbers.

1.7 Explain the polynomials of Second, Third and fourth degree definitions, rational functions with arithmetic operations on them, Homogeneous functions, symmetric expressions and notations with suitable examples in each case.

1.8 Explain surds and rationalizing factors with suitable simple examples.

1.9 Explain logarithms with basic properties.

1.10 Explain solving a quadratic equation by factorization and formula methods and solving fourth and third degree equations using remainder theorem with simple constructed examples.

1.11 State the definitions of \(n, \ p_r, \ C_r. \)

1.12 State Binomial expansions of the type \(x \ a \ n, \ l \ x \ 1, \ l \ x \ 2, \ l \ x \ 3. \)
1.13 Explain the exponential constant e, exponential function, exponential series, Logarithmic Series, and also define Hyperbolic and inverse Hyperbolic functions with useful identities.
1.14 Define the basic Trigonometric ratios, their properties and allied angles formulae.
1.15 Explain two dimensional co-ordinate system, distance and ratio formulae centroid and the meaning of the graph of a function with suitable examples.

Unit-II. Algebra

Matrices
2.1 Definition of a matrix, various types of matrices with examples, define the order of a matrix- define square matrix and 3rd order square matrix with examples.
2.2 Define sum, scalar multiplication and product of matrices, algebra of matrices (associative, distributive, commutative properties) with examples and counter examples.
2.3 Define the transpose of a matrix, symmetry and non-symmetry of matrices, resolving a square matrix in to a sum of a symmetric and non-symmetric matrices-Examples in all cases.
2.4 Define minor, cofactor of an element of a 3x3 square matrix as determinant of 2x2 square matrix with examples. Define and determine the adjoint of a square matrix give examples.
2.5 Define determinant of a 3x3 matrix- Laplacian expansion with examples. Define singular and non singular matrices.
2.6 Define the multiplicative inverse of a 3x3 matrix, relation between the Adjoint and inverse leading to the formula $A^{-1} = adj A / det A$ (proof not necessary) with examples.
2.7 System of 3 linear equations in 3 unknowns, matrix representation, solution by matrix inversion method and Cramer’s rule-examples
2.8 Elementary row and column operations on a 3x3 matrix-examples, Gauss-Jordan method to solve a system of 3 linear equations in 3 unknowns with examples.
2.9 Row operations for evaluating the determinant of a 3x3 matrix with simple illustrative examples. Also state properties of determinants with illustrative examples.

3. Partial Fractions
3.1 Define rational, proper and improper fractions of functions.
3.2 Explain the Procedure of resolving rational fractions of the type mentioned below into partial fractions.

\[
\frac{f(x)}{(x+a)(x+b)(x+c)}
\]

\[
\frac{f(x)}{(x+a)^2(x+b)(x+c)}
\]

\[
\frac{f(x)}{(x^2+a)(x+b)}
\]

\[
\frac{f(x)}{(x+a)(x^2+b)^2}
\]
Unit-III Trigonometry

4.0 Compound Angles
4.1 Define compound angles, State the formulas of \(\sin(A\pm B), \cos(A\pm B), \tan(A\pm B)\) and \(\cot(A\pm B)\), simple examples, derive the values of \(\sin 15^\circ, \cos 15^\circ, \sin 75^\circ, \cos 75^\circ, \tan 15^\circ, \tan 75^\circ\) etc.
4.2 Derive identities like \(\sin(A+B) \sin(A-B) = \sin^2 A - \sin^2 B\) etc.
Solve simple problems on compound angles.

5.0 Multiple and Sub multiple Angles
5.1 Derive the formulae of multiple angles \(2A, 3A\) etc and sub multiple angle \(A/2\) in terms of angle \(A\) of trigonometric functions.
5.2 Derive useful allied formulas like \(\sin A = \sqrt{1-\cos 2A}/2\) etc
5.3 Provide examples on the above formulae

6.0 Transformations
6.1 Derive the formulae on transforming sum or difference of two trigonometric ratios in to a product and vice versa- examples on these formulae.
6.2 Apply these formulae to sum or difference or product of three or more terms and solve problems.

7.0 Inverse Trigonometric Functions
7.1 Understand the concept of the inverse of a trigonometric function by selecting an appropriate domain and range. Define inverses of six trigonometric functions along with their domains and ranges.
7.2 To derive relations between inverse trigonometric functions so that given \(A = \sin^{-1} x\), to Express angle \(A\) in terms of other inverse trigonometric functions- with examples.
7.3 State various properties of inverse trigonometric functions and identities like \(\sin^{-1} x + \cos^{-1} x = \pi/2\) etc Derive formulae like \(\tan^{-1} x + \tan^{-1} y = \tan^{-1} ((x+y)/(1-xy))\) etc., and solve simple problems.

8.0 Trigonometric Equations
8.1 Explain what is meant by the solution of trigonometric equations. To find the general solutions of \(\sin x = k, \cos x = k\) and \(\tan x = k\) with appropriate examples.
8.2 To solve models of the type \(a \sin^2 x + b \sin x + c = 0, a \cos x + b \sin x = c\) etc., and problems using simple transformations.

9.0 Properties and Solutions of Triangles
9.1 To state sine rule, cosine rule, tangent rule and projection rule.
9.2 Give the formulas for \(\sin A/2, \cos A/2, \tan A/2\) and \(\cot A/2\) in terms of semi-perimeter and sides \(a,b,c\) and solve problems.
9.3 Give various formulae for the area of a triangle. Solve problems on the above formulae.
9.4 Explain what is meant by solving a triangle; solve a triangle given (i) three sides, (ii) two sides and an included angles, (iii) two sides and an opposite angle-case of two solutions and (iv) one side and two angles.
10.0 Complex numbers:

10.1 Give the definition of a complex number, its modulus and Conjugate of a complex number and their properties.
10.2 Define the arithmetic operations on Complex numbers with examples.
10.3 Define amplitude of a complex number and give the modulus-amplitude (polar) form, Exponential (Euler) form of a complex number - illustrative examples on all the above.
10.4 State DeMoivre’s Theorem (proof not necessary) and its applications to complex numbers eg. Finding the roots, powers, simplifications of a complex number with illustrative examples.

Unit-IV Coordinate Geometry

11.0 Locus, Translation of axes and Straight lines

11.1 Explain the concepts of locus of a point, shifting of origin (translation of axes) with illustrative examples.
11.2 Provide equations of a straight line in various forms, explain the slope, angle between two lines, point of intersection of lines, perpendicular distance from a point to a line, distance between two parallel lines, provide examples.

12.0 Circles

12.1 Define a circle, provide circle equation given (i) center and radius, (ii) given two ends of a diameter with examples.
12.2 State the general equation of a circle and explain the procedure to find the centre, radius from it with examples.
12.3 Problems on finding the equation of circle passing through three given points.
12.4 Define the tangent and normal at a point on the circle and problems relating to finding their equations (Derivation of general Equations not necessary). Define the pole and polar of a circle and find the pole of a line and polar of a point w.r.t. a circle. (Derivation of general Equations not necessary)-Simple examples only.

13.0 Elements of Conics

13.1. Define a conic, explain the terms focus, directrix, eccentricity, axes and latus rectum of a conic.
13.2 Find the Equation of a Conic, given its focus, eccentricity and directrix.

14.0 Parabola

14.1 Derive the standard equation of a parabola with vertex at origin and one of the coordinate axes as its axis (four forms) and also the standard forms with translation of axes (shifting of origin, vertex at \((h,k)\) and axis parallel to one of the coordinate axes).
14.2 Given the equation of parabola, explain how to reduce it to standard form and find its vertex, focus, directrix, axis, latus rectum etc.-illustrative examples.
14.3 To find the equation of a parabola given any two of focus, vertex and directrix-examples
14.4 To find the equation of a parabola passing through 3 given points.
14.5 Applications of parabola to practical problems.

15.0 Ellipse

15.1 Derive the standard equation of an ellipse, Types of ellipse with (i) center at origin, coordinate axes as axes and (ii) center at \((h,k)\) and axes parallel to coordinate axes.
15.2. Find the foci, center, vertices, axes, directrices, latera recta for an ellipse in standard form and Their length and prove that sum of focal distances from any point on the ellipse is equal to length of major axis solve problems.
15.3 To find the equation of an ellipse (i) given focus, eccentricity and equation of directrix and (ii) in standard form and passing through two given points.
15.4 Applications of ellipse to practical problems—simple cases.

16.0 Hyperbola
16.1 Derive the standard equation of hyperbola, explain different forms, define rectangular and conjugate hyperbola.
16.2 Mention the properties of hyperbola with examples.
16.3 To find the equation of a hyperbola given its (i) focus, directrix and eccentricity, (ii) asymptotes.
16.4 To find the centre, foci, vertices, axes, directrices, latera recta and the length of latus rectum given equation of a hyperbola in standard form.

17.0 Three Dimensional Geometry
17.1 Explain the three dimensional coordinate system.
17.2 Explain the distance between two points with problems.
17.3 Explain the ratio formula with examples.
17.4 State the formulae to find the centroid of a triangle and the tetrahedron with simple examples.
17.5 Define the direction cosines and direction ratios of a line, angle between two lines with Illustrative examples.
17.6 State the general equation of a plane, its intercept form, plane passing through a given point and perpendicular to a line whose direction ratios are given—angle between two planes—simple illustrative examples and problems.

Unit-V Differential Calculus

18.0 Limit and Continuity
18.1 Explain the concept of limit and meaning of \(\lim_{x \to a} f(x) \) l and State the properties of limits.
18.2 Mention the Standard limits \(\lim_{x \to a} \frac{x^n}{a^n}, \frac{\sin x}{x}, \frac{\tan x}{x}, \frac{a^x}{x}, \frac{e^x}{x}, \frac{1}{x^2}, (1 + \frac{1}{x})^r \) as \(x \to a \) and
also \(\lim_{x \to a} \frac{1}{x} \) (All without proofs) with illustrative examples applying the above and
also evaluate the limits of the type \(\lim_{x \to a} \frac{ax^2 + bx + c}{x^2 - x + 1}, \lim_{x \to a} \frac{f(x)}{g(x)} \).
18.3 Explain the concept of continuity of a function at a point and in an interval. Some examples whether a given function is continuous or not can be mentioned.

19.0 Methods of differentiation

19.1 State the concept of derivative of a function \(y = f(x) \) – definition, first principle as
\[
\lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]
and also use the appropriate standard notations to denote the derivative of a function. Mention the significance of derivative in scientific and engineering applications.

19.2 Find the derivatives of elementary functions like \(x^n, \ e^x, \log x, \cos x, \sin x, \tan x, \sec x, \cosec x \) and \(\cot x \) using the first principles and also find the derivatives of simple functions from the first principle.

19.3 State the rules of differentiation of \(\text{Sum, Difference Scalar multiplication, Product and Quotient} \) of functions with illustrative and simple examples.

19.4 Explain the method of differentiation of a function of a function (Chain rule) with illustrative examples such as
\[
\text{i) } 2t^2 + 3/t
\]
\[
\text{ii) } x^2 \sin^2 x
\]
\[
\text{iii) } x/ x^2 + 1
\]
\[
\text{iv) } \log \{\sin (\cos x)\}.
\]

19.5 Find the derivatives of Inverse Trigonometric functions and examples using the Trigonometric transformations.

19.6 Explain the method of differentiation of a function with respect to another function and also Differentiation of Parametric functions with illustrative examples.

19.7 Explain the procedure of differentiating of hyperbolic and implicit functions with examples.

19.8. Explain the need of taking logarithms for differentiating some functions with illustrative examples like \([f(x)]^{f'(x)} \).

19.9. Explain the concept of successive differentiation – derivatives of second and higher order-examples.

19.10 Explain the concept of functions of several variables, partial derivatives and difference between the ordinary and partial derivatives with simple illustrative examples.

19.11 Explain the definition of Homogenous function of degree \(n \) and Statement of Euler’s Theorem for Homogeneous functions with applications to simple problems.

Unit-VI Applications of the Derivative

20.0 Geometrical Applications of Derivatives

20.1 State the geometrical meaning of the derivative as the slope of the tangent to the curve \(y = f(x) \) at any point on the curve.

20.2. To find the tangent and normal to the curve \(y = f(x) \) at any point on the curve using the slope found using the derivative.

20.3. Define the lengths of tangent, normal, sub-tangent and sub normal at any point on the curve \(y = f(x) \) – Provide formulae and examples.

20.4 Explain the concept of angle between two curves and procedure for finding the angle
between two given curves with illustrative examples.

21.0 Physical Applications of Derivatives

21.1 Explain the derivative as a rate of change in distance-time relations to find the velocity and acceleration of a moving particle with examples.

21.2 Explain the derivative as a rate measurer in the problems where the quantities like volumes areas vary with respect time- illustrative examples.

22.0 Derivatives to find extreme values

22.1 Define the concept of increasing and decreasing functions. Explain the conditions to find points where the given function is increasing or decreasing with illustrative examples.

22.2 Explain the procedure to find the extreme values (maxima or minima) of a function of single variable-simple problems yielding maxima and minima.

22.3 Solve problems on maxima and minima in applications like finding areas, volumes etc.

23.0. Derivatives to find Errors and Approximations

23.1 Use the definition of derivative to find the approximate values of a function of single variable and to find the errors in dependent or independent variables as the case may be- appropriate applications.

23.2 Provide formulae for relative error and percentage error in evaluating the dependent variable given the corresponding errors in independent variable. Provide simple examples with functions of one variable.

COURSE CONTENT

UNIT – I

1. Bridging of fundamentals in mathematics:

UNIT-II

2. Matrices:

3. Partial Fractions : Procedure for resolving rational functions of the types mentioned below in to into partial fractions.
i) \[\frac{f(x)}{(x+a)(x+b)(x+c)} \]

ii) \[\frac{f(x)}{(x+a)^2(x+b)(x+c)} \]

iii) \[\frac{f(x)}{(x^2+a)(x+b)} \]

iv) \[\frac{f(x)}{(x+a)(x^2+b)^2} \]
UNIT –II

Trigonometry

4 Compound angles-Formulas of $\sin(A \pm B), \cos(A \pm B), \tan(A \pm B), \cot(A \pm B)$, and related identities with problems.
5 Multiple and sub multiple angles-trigonometric ratios of multiple angles $2A, 3A$ and submultiple angle $A/2$ - problems.
6 Transformations of products into sums or differences and vice versa-simple problems
7 Inverse trigonometric functions-definition, domains and ranges-basic properties- problems.
8 Trigonometric equations- concept of a solution, principal value and general solution of trigonometric equations: $\sin x = k$, $\cos x = k$, $\tan x = k$. Solutions of simple quadratic equations, equations involving multiple angles and usage of transformations- problems.
9 Properties and solutions of triangles- relation between sides and angles of a triangle- sine rule, cosine rule, tangent rule and projection rule-area of a triangle- solving a triangle-problems.
10 Complex Numbers: Definition of a complex number, Modulus and conjugate of a complex number, Arithmetic operations on complex numbers, Modulus- Amplitude (polar) form, Exponential form(Euler) form of a complex number- Problems. DeMoivre’s Theorem and its applications in complex numbers- Simple problems.

UNIT-IV

Coordinate geometry

11 Concepts of locus, change of axes- various forms of straight lines – angle between lines, perpendicular distance from a point, distance between parallel lines-examples.
12 Circle-definition-Circle equation given center and radius- circle equation with given diameter-general equation-finding center, radius-tangent, normal, pole and polar of a circle.
13 Definition of a conic- focus, directrix and eccentricity-finding the equation of a conic given focus, directrix and eccentricity
14 Parabola- Standard forms- finding focus, vertex, directrix etc. of a parabola-simple applications
15 Ellipse- Standard forms- finding foci, vertices, directrices etc. of an ellipse-properties of ellipse- simple application problems.
16 Hyperbola- Standard forms- finding foci, vertices, directrices etc. of a hyperbola-properties of hyperbola- simple problems
17 Three dimensional geometry: Coordinate system-distance between two points-ratio formula-direction cosines and ratios of a line- angle between two lines-centroid of a triangle and tetrahedron-simple equation of a plane-general form-angle between planes.

UNIT-V

Differential Calculus

18 Concept of Limit- Definition- Properties of Limits and Standard Limits - Simple Problems-Continuity of a function at a point- Simple Examples only.
19 Concept of Derivative- Definition(first Principle)- different notations-Derivatives of elementary functions- problems. Derivatives of Sum, Product,Quotient,Scalar multiplication of functions- problems. Chain rule, derivatives of Inverse
Trigonometric functions, Derivative of a function with respect to another function, Derivative of parametric equations, Derivative of hyperbolic, Implicit functions Functions, Logarithmic Differentiation – problems in each case. Successive differentiation-examples-. Partial differentiation, Euler’s Theorem, simple problems.

UNIT-VI

Applications of the Derivative:

20 Geometrical meaning of the derivative, equations of Tangent and normal to a curve at any point. The lengths of Tangent, Normal, Subtangent and Subnormal to the curve at any point. Angle between the curves- problems.
21 Physical applications of the derivative – velocity, acceleration, derivative as a rate Measure – Problems.
22 Applications of the derivative to find the extreme values – Increasing and decreasing functions, finding the maxima and minima of simple functions - problems leading to applications of maxima and minima.
23 Applications of derivative in finding errors and approximations of functions and simple problems.

REFERENCE:

(2) Text book of Engineering Mathematics – I by Dr.J.Sairam and others – UNI-TECH SERIES.
(4) Differential Calculus by Manicavachagom Pillai.
(5) Elementary Algebra by Hall & Knight.
(7) Trigonometry By S.L Loney.
ENGGINEERING PHYSICS

Subject Title : Engineering Physics
Subject Code : EE -103
Periods per week : 04
Total periods per year : 120

TIME SCHEDULE

<table>
<thead>
<tr>
<th>S.No</th>
<th>Major Topics</th>
<th>No. of Periods</th>
<th>Weightage of Marks</th>
<th>Short Answer Type</th>
<th>Essay Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Units and Dimensions</td>
<td>08</td>
<td>03</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>Elements of Vectors</td>
<td>10</td>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3.</td>
<td>Kinematics</td>
<td>13</td>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>Friction</td>
<td>08</td>
<td>03</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td>Work, Power and Energy</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>6.</td>
<td>Simple Harmonic Motion</td>
<td>11</td>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7.</td>
<td>Heat & Thermodynamics</td>
<td>13</td>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8.</td>
<td>Sound</td>
<td>11</td>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9.</td>
<td>Properties of matter</td>
<td>14</td>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10.</td>
<td>Electricity & magnetism</td>
<td>14</td>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11.</td>
<td>Modern Physics</td>
<td>08</td>
<td>03</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total:</td>
<td>120</td>
<td>110</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>

OBJECTIVES

1.0 UNITS AND DIMENSIONS

1.1 Introduction to units
1.2 Define Physical quantity, fundamental physical quantities and derived physical quantities
1.3 Define unit
1.4 Define fundamental units and derived units
1.5 State SI units with symbols
1.6 State Multiples and submultiples in SI system
1.7 Rules of writing S.I. units
1.8 State advantages of SI units
1.9 Define Dimensions and Dimensional formulae
1.10 Derive dimensional formulae of physical quantities
1.11 List dimensional constants and dimensionless quantities
1.12 State the principle of Homogeneity of Dimensions
1.13 Explain the applications of Dimensional Analysis with examples
1.14 State the limitations of dimensional analysis
1.15 Solve problems

2.0 ELEMENTS OF VECTORS

2.1 Introduction to Vectors
2.2 Define Scalar and Vector quantities
2.3 Give examples for scalar and vector quantities
2.4 Represent vectors graphically
2.5 Types of Vectors (Proper Vector, Null Vector, Unit Vector, Equal Vectors, Negative Vector, Like Vectors, Co-Initial Vectors, Co-planar Vectors and Position Vector).
2.6 Explain addition and subtraction of vectors
2.7 Represent a vector in space using unit vectors (I, j, k)
2.8 Resolution of vectors
2.9 Resultant of the vectors by component method
2.10 State parallelogram law of vectors and illustrations
2.11 Derive formula for resultant (Magnitude and direction)
2.12 State and Explain triangle law of vectors
2.13 State and Explain polygon law of vectors
2.14 Define Dot product of two vectors with examples (Work done, Gravitational P.E)
2.15 Mention the properties of Dot product
2.16 Define Cross products of two vectors with example (Torque, Linear velocity)
2.17 Mention the properties of Cross product.
2.18 Solve problems

3.0 KINEMATICS

3.1 Recapitulation of equations of motion in a straight line
3.2 Define acceleration due to gravity
3.3 Derive expressions for Maximum Height, time of ascent, time of descent, time of flight and velocity on reaching the point of projection
3.4 Derivation for height of a tower when a body projected vertically upwards from the top
3.5 Define projectile motion with examples
3.6 Explain Horizontal projection
3.7 Derivation for the path of a horizontal projectile
3.8 Explain oblique projection
3.9 Derivation for the path of an oblique projectile
3.10 Derive formulae for maximum height, time of flight and Horizontal Range of a projectile, maximum range in oblique projection
3.11 Derive formula for magnitude and direction of resultant velocity in oblique projection
3.12 Solve problems

4.0 FRICTION

4.1 Introduction to friction
4.2 Examples of friction in daily life
4.3 Definition of friction
4.4 Types of friction
4.5 Concept of Normal reaction
4.6 State laws of static friction
4.7 State laws of kinetic friction
4.8 Define coefficients of friction
4.9 Angle of friction w.r.t. rough horizontal surface
4.10 Derivations for displacement and time taken to come to rest over a rough horizontal surface and work done by frictional force
4.11 Define Angle of repose
4.12 Explain Motion of a body on a rough inclined planes
4.13 Derive expressions for acceleration of a body on a rough inclined plane (UP &DOWN)
4.14 Derive expressions for acceleration of a body on a smooth inclined plane (UP &DOWN)
4.15 List the Advantages and Disadvantages of friction
4.16 Mention the methods of minimizing friction
4.17 Solve problems

5.0. WORK, POWER AND ENERGY

5.1 Define work
5.2 State SI units, dimensional formula for work
5.3 Explain the concept of power
5.4 Define power
5.5 State SI units, dimensional formula for power
5.6 Define energy
5.7 State SI units, dimensional formula for energy
5.8 Define potential energy
5.9 Derive the expression for Potential energy, with examples
5.10 Define kinetic energy
5.11 Derive the expression for kinetic energy, with examples
5.12 Work Energy theorem
5.13 Relation between Kinetic energy and momentum
5.14 State the law of conservation of energy and verify in the case of freely falling body
5.15 Law of conservation of energy in the case of simple pendulum-theory only
5.16 Define conventional and non conventional energy sources with examples
5.17 Solve problems

6.0 SIMPLE HARMONIC MOTION

6.1 Define S. H. M
6.2 State the conditions of S. H. M
6.3 Give examples of S. H. M
6.4 Derive the equation for S H M as projection of particle executing uniform circular motion
6.5 Derive expression for displacement
6.6 Derive expression for velocity
6.7 Derive expression for acceleration
6.8 Derive expression for period and frequency of S H M
6.9 Define phase of S H M
6.10 Derive expression for period of simple pendulum
6.11 Experiment for determination of acceleration due to gravity using simple pendulum.
6.12 Seconds pendulum
6.13 Solve problems

7.0 HEAT AND THERMODYNAMICS

7.1 Introduction to expansion of gases
7.2 Explain Boyle’s law
7.3 Experimental verification of Boyle’s law
7.4 Explain absolute scale of temperature
7.5 State Charles laws
7.6 Derive ideal gas equation
7.7 Define gas constant and Universal gas constant
7.8 Explain why universal gas constant is same for all gases
7.9 State SI unit and value of universal gas constant
7.10 State the gas equation in terms of density
7.11 Differences between r and R
7.12 Concept of internal energy
7.13 Definition of external work
7.14 Calculate external work done by a gas
7.15 Explain Isothermal process and Adiabatic process
7.16 State laws of thermodynamics
7.17 Define specific heats & molar specific heats of a gas
7.18 Derive relation \(C_p - C_v = R \)
7.19 Solve problems

8.0 SOUND

8.1 Introduction to sound
8.2 Distinguish between musical sound and noise
8.3 Explain noise pollution and state SI unit for noise
8.4 Explain causes of noise pollution
8.5 Explain effects of noise pollution
8.6 Explain methods of minimizing noise pollution
8.7 Explain the phenomenon of beats
8.8 Explain the applications of beats
8.9 Explain Doppler effect
8.10 Derive formula for apparent frequency – (i) Source in Motion and observer at rest (ii) Observer in motion and source at rest
8.11 Applications of Doppler effect
8.12 Explain reverberation and reverberation time
8.13 Write Sabine’s formula
8.14 Explain echoes
8.15 Solve problems
9.0 PROPERTIES OF MATTER

9.1 Introduction to Elasticity
9.2 Definitions of Stress and strain, their units and dimensional formulae
9.3 Statement of Hooke’s law
9.4 Types of Stress
9.5 Types of strain
9.6 Types of moduli of elasticity
9.7 Definition of Surface Tension and examples
9.8 Explanation to Surface Tension with reference to molecular theory
9.9 Definitions of angle of contact and capillarity
9.10 State formula for Surface Tension based on capillarity
9.11 Experimental determination of surface tension by capillarity method
9.12 Concept of Viscosity, definition and examples
9.13 Newton’s formula for Viscous force and definition of coefficient of Viscosity.
9.14 Effect of temperature on viscosity of liquids and gases
9.15 State Poiseulle’s equation for coefficient of viscosity
9.16 Experimental determination of coefficient of viscosity
9.17 Solve problems

10.0 ELECTRICITY AND MAGNETISM

10.1 Introduction to Electricity
10.2 Ohm’s law and explanation
10.3 Definitions of specific resistance, conductance and their units
10.4 Statements of Kicchoff’s laws and explanation
10.5 Wheatstone’s bridge
10.6 Meter bridge
10.7 Experimental determination of specific resistance using Meter Bridge
10.8 Introduction to magnetism
10.9 Coulomb’s inverse square law of magnetism
10.10 Definition of magnetic field and magnetic lines of force
10.11 Magnetic induction field strength-units and dimensions
10.12 Moment of couple on a bar magnet placed in a uniform magnetic field
10.13 Derivation for Magnetic induction field strength at a point on the axial line
10.14 Derivation for Magnetic induction field strength at a point on the equatorial line
10.15 Solve problems

11.0 MODERN PHYSICS

11.1 Explain Photo-electric effect
11.2 Einstein ‘s photoelectric equation
11.3 State laws of photoelectric effect
11.4 Working of photoelectric cell
11.5 Applications of photoelectric effect
11.6 Recapitulation of refraction of light and its laws
11.7 Critical angle
11.8 Total Internal Reflection
11.9 Explain the principle and working of Optical Fiber
11.10 Mention types of optical fibbers
11.11 List the applications of Optical Fiber
11.12 Definition of super conductor and superconductivity
11.13 Examples of superconducting materials
11.14 Properties of Superconductors
11.15 Applications of superconductors

COURSE CONTENTS

1. UNITS AND DIMENSIONS:

2. ELEMENTS OF VECTORS:

Scalars and Vectors –Types of vectors- Addition of vectors- Representation of vectors- Resolution of vectors - Parallelogram, Triangle and Polygon laws of vectors– Dot and Cross products of vectors- Problems

3. KINEMATICS:

Introduction- Concept of acceleration due to gravity- Equations of motion for a freely falling body and for a body thrown up vertically- Projectiles- Horizontal and Oblique projections- Expressions for maximum height, time of flight, range and resultant velocity- problems

4. FRICTION:

Introduction to friction- Causes- Types of friction- Laws of friction- Angle of repose-Angle of friction-- Motion of a body over a horizontal surface- smooth inclined plane- rough inclined plane- Advantages and disadvantages of friction- Methods of reducing friction – Problems

5. WORK, POWER AND ENERGY:

6. SIMPLE HARMONIC MOTION:

Introduction- Conditions of SHM- Definition- Examples- Expressions for displacement, velocity, acceleration, Time period, frequency and phase in SHM- Time period of a simple pendulum- Experimental determination of acceleration due to gravity-seconds pendulum- Problems
7. HEAT AND THERMODYNAMICS:

Expansion of Gases- Boyle’s law-Experiment of Boyle’s law- Absolute scale of temperature- Charles laws- Ideal gas equation- Universal gas constant-Differences between r and R- Internal energy- External work done by a gas- Isothermal and adiabatic processes- Laws of thermodynamics- Two specific heats of a gas- Relation between Cp and Cv- Problems

8. SOUND:

Sound- Nature of sound- Musical sound and noise- Noise pollution – Causes & effects- Methods of reducing noise pollution- Beats- Doppler effect- Echo- Reverberation-Reverberation time-Sabine ‘s formula- Problems

9. PROPERTIES OF MATTER:

Introduction to Elasticity- Stress and Strain- Hooke’s law- Types of Stress and Strain- Types of moduli of elasticity- Introduction to Surface Tension- Definition and examples- Molecular theory- Angle of contact and capillarity- Experimental determination of surface tension by capillary method- Effects of temperature and impurities- Introduction to Viscosity- Definition and examples- Newton’s formula for viscosity- Experimental determination of viscosity by Poiseuille’s method- Effect of temperature-Problems

10. ELECTRICITY & MAGNETISM:

Ohm’s law and explanation- Specific resistance- Kirchoff’s laws- Wheatstone’s bridge- Meter bridge- Coulomb’s inverse square law - magnetic field- magnetic lines of force-Magnetic induction field strength- magnetic induction field strength at a point on the axial line - magnetic induction field strength at a point on the equatorial line –problems.

11. MODERN PHYSICS;

Photoelectric effect –Einstein’s photoelectric equation-laws of photoelectric effect - photoelectric cell –Applications of photo electric effect-critical angle – Total internal reflection- fiber optics- -principle and working of an optical fiber-types of optical fibers - Applications of optical fibers- concepts of superconductivity - applications

Reference Books
1. Intermediate Physics Volume 1 and 2 Telugu academy.
2. Intermediate Physics Volume 1 and 2 Deepthi Publications
3. Unified Physics Volume 1,2,3 and 4 Dr. S.L. Gupta and Sanjeev Gupta.
4. Text book of Physics Volume 1 and 2 Resnik and Halliday
5. Text book of applied physics Dhanpath Roy
6. Fiber optics D.A. Hill
7. Engineering Physics M. Raghavendra
ENGG. CHEMISTRY & ENVIRONMENTAL STUDIES
(Common Subject)

Subject Title : Engg. Chemistry & Environmental studies

Subject Code : EE -104
Periods per week : 04
Total periods per year : 120

TIME SCHEDULE

<table>
<thead>
<tr>
<th>S.No</th>
<th>Major Topic</th>
<th>No. of Periods</th>
<th>Weightage of Marks</th>
<th>No. of Short Questions</th>
<th>No. of Essay Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>ENGINEERING CHEMISTRY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>FUNDAMENTALS OF CHEMISTRY</td>
<td>18</td>
<td>16</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>SOLUTIONS</td>
<td>10</td>
<td>08</td>
<td>1</td>
<td>1/2</td>
</tr>
<tr>
<td>3.</td>
<td>ACIDS AND BASES</td>
<td>10</td>
<td>08</td>
<td>1</td>
<td>1/2</td>
</tr>
<tr>
<td>4.</td>
<td>PRINCIPLES OF METALLURGY</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5.</td>
<td>ELECTROCHEMISTRY</td>
<td>12</td>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6.</td>
<td>CORROSION</td>
<td>09</td>
<td>10</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>7.</td>
<td>WATER TECHNOLOGY</td>
<td>13</td>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8.</td>
<td>POLYMERS</td>
<td>12</td>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9.</td>
<td>FUELS</td>
<td>08</td>
<td>03</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>II.</td>
<td>ENVIRONMENTAL STUDIES</td>
<td>18</td>
<td>16</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

| Total | 120 | 110 | 10 | 08 |

OBJECTIVES: After the completion of the study of these units the student should be able to comprehend the following

I. ENGINEERING CHEMISTRY

1.0 Fundamentals of Chemistry

- **Atomic Structure:**
 1.1 Fundamental particles of an atom
 1.2 Understand the concept of atomic number and mass number
 1.3 Postulates of BOHR’S atomic theory and its limitations
 1.4 Briefly explain Quantum numbers
 1.5 Define and explain Aufbau principle, Hund’s rule and Pauli’s exclusion principle.
 1.6 Define Orbital
 1.7 Draw the shapes of s, p and d Orbitals
 1.8 Distinguish between Orbit and Orbital
 1.9 Understand electronic configuration of elements (up to element atomic number 30)
1.10 State modern periodic law
1.11 Salient features of modern periodic Table (Periods & Groups)

Chemical bonding
1.12 Introduction
1.13 Postulates of Electronic theory of valency
1.14 Types of Chemical bonds
1.15 Define ionic bond and explain ionic bond formation in NaCl and MgO
1.16 Properties of Ionic compounds
1.17 Define covalent bond and explain Covalent bond in H₂, O₂ and N₂ using Lewis dot method.
1.18 Properties of Covalent compounds
1.19 Explain Metallic bond

Oxidation-Reduction:
1.20 Definition of Oxidation and Reduction
1.21 Definition of Oxidation Number and its calculations
1.22 Difference between Oxidation Number and Valency

2.0 Solutions
2.1 Define Solution, solute and solvent
2.2 Types of solutions
2.3 Define mole and understand Mole concept
2.4 Define and explain Molarity
2.5 Define and explain Normality
2.6 Define and explain equivalent weight using acids, bases and salts
2.7 Numerical problems on Mole, Molarity and Normality

3.0 Acids and bases
3.1 Explain Arrhenius theory of Acids and Bases and its limitations
3.1 Explain Bronsted – Lowry theory of acids bases and its limitations
3.2 Explain Lewis theory of acids and bases and its limitations
3.3 Explain Ionic product of water
3.4 Define pH and explain Sorenson scale
3.5 Numerical problems on pH (Strong Acids and Bases)
3.6 Define buffer solution with examples
3.7 Applications of buffer solutions

4.0 Principles of Metallurgy
4.1 Characteristics of Metals
4.2 Distinction between Metals and Non Metals
4.3 Definitions of Metallurgy, Mineral, Ore, Gangue, Flux and Slag
4.4 Methods of concentration of ore – Hand picking, Levigation, Froth Floatation
4.5 Extraction of crude metal – Roasting, Calcination, Smelting
4.6 Purification of Metals – Electrolytic Refining
4.7 Define an Alloy
4.8 Composition and uses of following Alloys: Brass, German silver, Nichrome

5.0 Electrochemistry
5.1 Define conductor Insulator, Electrolyte and Non – electrolyte
5.2 Explain Arrhenius theory of electrolytic dissociation
5.3 Define and explain electrolysis by taking example fused NaCl
5.4 Explain Faraday’s laws of electrolysis
5.5 Define chemical equivalent and electrochemical equivalent
5.6 Numerical problems based on Faraday’s laws of electrolysis
5.7 Define Galvanic cell and explain its construction
5.8 Distinguish between electrolytic cell and galvanic cell
5.9 Understand the standard electrode potentials
5.10 Understand electrochemical series and its significance
5.11 Understand emf of a cell
5.12 Numerical problems on emf of cell

6.1 Corrosion
6.1 Define corrosion
6.2 Factors influencing the rate of corrosion
6.3 Understand the concept of electrochemical theory of corrosion
6.4 Describe the formation of a) composition cells b) stress cells c) concentration cells
6.5 Understand rusting of iron
6.6 Explain the mechanism of rusting of iron
6.7 Explain the methods of prevention of corrosion a) protective coatings b) cathodic protection (Sacrificial anode process and Impressed – voltage process)

7.0 Water Technology
7.1 Sources of water
7.2 Define soft and hard water
7.3 Understand temporary and permanent hardness and the compounds causing hardness (with Formulae)
7.4 State the disadvantages of using hard water in industries
7.5 Define Degree of hardness, units of hardness (ppm)
7.6 Explain the methods of softening of hard water: a) permutit process b) ion-Exchange process
7.7 Know the essential qualities of drinking water
7.8 Describe the method of municipal treatment of water for drinking purpose.
7.9 Explain Osmosis and Reverse Osmosis. Advantages of Reverse Osmosis

8.0 Polymers
8.1 Basic concepts of polymerisation
8.2 Describe the methods of polymerisation a) addition polymerisation of Ethylene b) condensation polymerisation of phenol and formaldehyde (Only flow chart i.e. without chemical equations)
8.3 Define the term plastic
8.4 Classification of plastics with examples
8.5 Distinguish between thermo and thermosetting plastics
8.6 Characteristics of plastics
8.7 Advantages of plastics over traditional materials
8.8 Disadvantages of using plastics.
8.10 Know the term natural rubber
8.11 State the structural formula of Natural rubber
8.12 Explain the processing of Natural rubber from Latex
8.13 Characteristics of natural rubber
8.14 Explain the process of Vulcanization
8.15 Characteristics of Vulcanized rubber
8.16 State the term Elastomer
8.17 Describe the preparation and uses of the following synthetic rubbers
 a) Buna-s b) Neoprene rubber

9.0 Fuels
9.1 Define the term fuel
9.2 Classification of fuels based on physical state – solid, liquid and gaseous fuels, and based on occurrence- primary and secondary fuels
9.3 Understand characteristics of good fuel
9.4 Extraction and Refining of Petroleum
9.5 State the composition and uses of gaseous fuels: a) water gas b) producer gas c) natural gas d) coal gas e) Bio gas f) acetylene

II. ENVIRONMENTAL STUDIES

1.1 Define terms environment and environmental studies. explain the scope and importance of environmental studies
1.2 Understand the terms – lithosphere, hydrosphere, atmosphere, biosphere, biotic component, energy component, pollutant, pollution, contaminant receptor - sink, particulates, dissolved oxygen, Threshold limit value, BOD, COD
1.3 Define air pollution
1.4 Classification of air pollutants- based on origin and state of matter
1.5 State and explain the causes of air pollution
1.6 Explain the use and over exploitation of forest resources and deforestation
1.7 Explain the effects of air pollution on human beings, plants and animals
1.8 Explain the green house effect- ozone layer depletions and acid rain
1.9 Understand the methods of control of air pollution
1.10 Define water pollution
1.11 Explain the causes of water pollution
1.12 Explain the effects of water pollution on living and non living things
1.13 Understand the methods of control of water pollution
1.14 knows growing energy needs renewable and non-renewable energy sources. Understand the use of alternate energy sources
1.15 Define an Ecosystem
1.16 Define producers, consumers and decomposers with examples.
1.17 Define biodiversity and threats to biodiversity
COURSE CONTENTS

I ENGINEERING CHEMISTRY

1. Fundamentals of Chemistry
 Atomic Structure: Introduction - Fundamental particles – Bohr’s theory –
 Quantum numbers - Aufbau principle - Hand’s rule - Pauli’s exclusion Principle-
 Orbitals, shapes of s, p and d orbitals - Electronic configurations of elements

 Periodic Table: Modern Periodic Law, salient features of Modern Periodic Table

 Chemical Bonding: Introduction – types of chemical bonds – Ionic and covalent
 bond with examples – Properties of Ionic and Covalent compounds – Metallic
 bond

 Oxidation-Reduction: Concepts of Oxidation-Reduction, Oxidation Number
 -calculations, differences between Oxidation Number and Valency

2. Solutions
 Introduction-concentration methods – Mole concept, Molarity, Normality,
 Equivalent weights, Numerical problems on Mole, Molarity and Normality

3. Acids and Bases
 Introduction – theories of acids and bases and limitations – Arrhenius theory-
 Bronsted –Lowry theory – Lewis acid base theory – Ionic product of water - pK_a and
 related numerical problems – buffer solutions –Applications.

4. Principles of Metallurgy
 Characteristics of Metals and distinctions between Metals and Non Metals, Metallurgy, ore,
 Gangue, Flux, Slag - Concentration of Ore –Hand picking, Levigation, Froth floatation – Extraction of
 crude Metal – Roasting, Calcination, Smelting – Alloys – Composition and uses of Brass, German
 silver and Nichrome

5. Electrochemistry
 Conductors, insulators, electrolytes - Arrhenius theory of electrolytic dissociation – electrolysis –
 Faraday’s laws of electrolysis- numerical problems – Galvanic cell – standard electrode potential –
 electro chemical series –emf and numerical problems on emf of a cell

6. Water technology
 water – degree of hardness (ppm) – softening methods – permutit process – ion exchange process –
 numerical problems related to degree of hardness – drinking water – municipal treatment of water for
 drinking purpose – Osmosis, Reverse Osmosis - advantages of Reverse osmosis

7. Corrosion
 Introduction - factors influencing corrosion - electrochemical theory of corrosion
 - composition, stress and concentration cells– rusting of iron and its mechanism – prevention of
 corrosion by coating methods, cathodic protection
8. **Polymers**

Fuels

Definition and classification of fuels – characteristics of good fuel - Extraction and Refining of petroleum - composition and uses of gaseous fuels.

II. ENVIRONMENTAL STUDIES

Introduction – environment –scope and importance of environmental studies important terms – air pollution - causes-Effects – forest resources : uses and over exploitation, deforestation, acid rain, green house effect –ozone depletion – control of air pollution – Water pollution – causes – effects – control measures, renewable and non renewable energy sources – Concept of ecosystem, producers, consumers and decomposers – Biodiversity, definition and threats to Biodiversity.

Reference books

1. Intermediate Chemistry Vol 1& 2 Telugu Academy
2. Intermediate Chemistry Vol 1& 2 Vikram Publishers
4. Engineering Chemistry Jain and Jain
6. Engineering Chemistry M.S.N.Raju, etc, Hi-Tech.
7. Applied Chemistry V.Subrahmanyam
8. Engineering Chemistry Sharma
9. Environmental chemistry A.K. De
10.Engg. Chemistry & Env. Studies Dr. G. Venkatanarayana
TIME SCHEDULE

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Major Topics</th>
<th>Periods</th>
<th>Weightage of Marks</th>
<th>Short questions</th>
<th>Essay questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Electric Current–Ohm’s law, Resistance, Energy</td>
<td>30</td>
<td>16</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>Conducting Materials.</td>
<td>16</td>
<td>8</td>
<td>1</td>
<td>1/2</td>
</tr>
<tr>
<td>3.</td>
<td>Heating effects of electric Current</td>
<td>15</td>
<td>10</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>Magnetic effects of Electric current</td>
<td>25</td>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5.</td>
<td>Electromagnetic Induction</td>
<td>30</td>
<td>16</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6.</td>
<td>Electrostatics</td>
<td>22</td>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7.</td>
<td>Insulating Materials</td>
<td>18</td>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8.</td>
<td>Special Purpose Materials</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>1/2</td>
</tr>
<tr>
<td>9.</td>
<td>Semiconductor Devices</td>
<td>16</td>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
<td>180</td>
<td>110</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>

OBJECTIVES

On completion of the course the student should be able to

1.0 *Comprehend the basic Principles of Electricity*

1.1 Distinguish between conductor, insulator and semi-conductor with respect to valence electrons and energy level diagrams.

1.2 Infer Ohm’s Law and state it.

1.3 State the limitations of Ohm’s law.

1.4 Give the concept of Resistance to flow of electrons, define the terms specific resistance and conductivity.

Deduce the relation \(R = \frac{1}{\sigma} \)

1.5 Solve simple problems based upon the above formula.

1.6 Effect of Alloying on Resistivity.

1.7 Explain the effects of temperature on resistance and define temperature coefficient of resistance.

1.8 Explain the variation of temperature co-efficient of resistance.

1.9 Develop the formula for resistance at any temperature

As \(R_t = R_0 (1 + \alpha t) \)

1.10 Solve problems based on the above formula.

1.11 Explain equivalent resistance of a network, develop the expressions for equivalent resistance with simple series and parallel connections.

1.12 Give the guide lines for calculations of equivalent resistance in the case of series - parallel networks.

1.13 Solve problems on the above

1.14 Give the idea of division of current in parallel circuits

1.15 Solve numerical problems on the above.
1.16 Give the expressions and units of electrical Power and electrical Energy.
1.17 Calculation of electricity bill for domestic consumers.

Conducting Materials.
2.1 Explain the Terms (a) Hardening (b) Annealing
2.2 Explain the effects of these on copper regarding Electrical and Mechanical properties
2.3 State the main requirements of Low Resistivity Materials. List some Examples.
2.4 Mention the properties & applications of Copper and Aluminium
2.5 Distinguish between Copper and Aluminium
2.6 Mention the properties, applications and advantages of ACSR Conductors and AAAC.
2.7 State the requirements of High Resistive Materials.
2.8 State the types of High Resistive Materials.
2.9 List the properties & Applications of High Resistive Materials.
 a. Manganin
 b. Eureka
 c. Constantan
 d. Nichrome
 e. Tungsten
 f. Platinum
 g. Mercury and
 h. Carbon

3.0 **Know the heating effects of Electric Current:**
3.1 Explain the Mechanical equivalent of heat.
3.2 State the heat produced due to flow of current
3.3 Explain the practical applications of heat produced
due to Electric current in metal filament lamps, Electric - kettle, Electric cooker,
 Electric Iron, Space heaters, Geyser, Infrared lamp.
3.4 Define thermal efficiency.
3.5 Solve problems on the above.

4.0 **Know the magnetic effects of Electric Current**
4.1 Develop the idea of lines of force & magnetic Field.
4.2 Plot the field pattern due to
 a. Straight current carrying conductor
 b. Solenoid and
 c. Toroid.
4.3 Give expressions for field strength (No derivation)
 a. At Centre of a circular conductor
 b. At any point on the axis of a circular conductor
 c. Around a Straight conductor
 d. On the axis of a solenoid
4.4 Explain the Mechanical force on a current carrying
 Conductor in a Magnetic field.
4.5 Give the expression for magnitude of the force
 on a conductor in a magnetic field
4.6 State the Flemming’s left hand rule
4.7 Develop the expression for the force between two
 parallel current carrying conductors
4.8 State the nature of the force with different directions of the currents
4.9 Define ampere
4.10 Solve problems on the above.
4.11 Define magnetizing force, permeability, flux and Reluctance
4.12 Develop the concept of the Magnetic circuits
4.13 Solve problems on simple magnetic circuits
4.14 Compare magnetic circuit with electric circuit
4.15 Draw B.H. Curves and Hysteresis loop and Explain them
4.16 Explain Hysteresis loss and State Steinmetz equation (No-Problems)
4.17 Classify the Magnetic Material as:
 (a) Ferro (b) Para (c) Dia-Magnetic materials with examples
4.18 State Curie Point
4.19 Define Magnetostriction.
4.20 Explain the Soft & Hard Magnetic materials with examples.

5.0 Understand Electro Magnetic Induction:
5.1 State Faraday’s laws of electro - magnetic induction
5.2 Explain dynamically and statically induced E.M.F.
5.3 State Lenz’s law and explain Flemming’s right hand rule
5.4 Develop the concept of self and mutual inductance
5.5 Derive the expressions for self and mutual inductances
5.6 State co-efficient of coupling
5.7 Explain the total inductance with series connections
 with reference to direction of flux.
5.8 Explain the energy stored per unit volume in a magnetic field.
5.9 Calculate energy stored per unit volume
5.10 Develop an expression for lifting power of a magnet.
5.11 Solve problems on the above.

6.0 Understand Electric Charge and Electrostatic Field
6.1 State Coulomb’s law of electrostatics and define unit charge
6.2 Define absolute and relative permittivity.
6.3 Solve problems on the above
6.4 Explain electrostatic field.
6.5 Plot electrostatic field due to
 a. Isolated positive charges
 b. Isolated negative charge
 c. Unlike charges side by side
 d. Like charges side by side
6.6 Compare electrostatic and magnetic fields
6.7 State field intensity
6.8 State Gauss theorem
6.9 Explain electric potential and potential difference
6.10 Explain di-electric strength and di-electric constant
6.11 Give the Permittivity of commonly used die-electric materials
 a. Air
 b. Bakelite
 c. Glass
 d. Mica
 e. Paper
 f. Porcelain
 g. Transformer oil
6.12 Explain Polarisation.
6.13 Explain Dielectric Loss
6.14 State the application of Dielectrics.
6.15 Define capacitance and its unit
6.16 Derive the formula of capacitance
6.17 State different capacitors
6.18 Give uses of different capacitors
6.19 Explain equivalent capacitance of
 a. Capacitors connected in series;
 b. Capacitors connected in parallel
6.20 Derive an expression for energy stored in a capacitor
6.21 Solve problems on the above
6.22 List the color codes of the resistors and capacitors as per BIS

7.0 Insulating Materials.
7.1 State the important electrical properties of Insulating materials.
 a. Insulating resistance
 b. Volume and Surface resistance
7.2 Explain factors affecting insulating resistance.
7.3 State the classification of Insulating materials on the basis of temperature like Y,A,E,B,F,H and C class.
7.4 State the classification of insulating materials.
7.5 Mention the properties & applications of Impregnated paper, Wood, Cardboard, Asbestos, Mica, Ceramics and Glass.
7.6 Explain Thermoplastic & Thermosetting resins with examples.
7.7 Explain the properties & applications of PVC
7.8 State the effects of the following on P.V.C
 (a) Filler (b) Stabilizer (c) Plasticizer (d) Additives.
7.9 State the Properties and application of following gasses.
 (a) Air (b) Nitrogen (c) Hydrogen (d) Sulphur – HexaFluoride

8.0 Special Purpose Materials.
8.1 State the various protective materials Lead, Paints, Steel Tapes.
8.2 Explain the thermo couple materials,
8.3 State the Bi-metals
8.4 State the soldering materials
8.5 State fuse and fuse materials
8.6 Explain the process of galvanising and impregnation
8.7 State Enamel coated copper wires: thin, medium and thick.

9.0 Know the semi-conductor Devices
9.1 Distinguish between intrinsic and extrinsic semi-conductors
9.2 Distinguish between P and N type semi-conductors
9.3 Explain the working of PN Junction diode with no bias, forward bias and reverse bias
9.4 Draw the characteristics of PN Junction diode with forward bias and reverse bias
9.5 Explain the operation of Zener diode.
9.6 Draw the characteristics of Zener diode.
9.7 Explain formation of PNP and NPN transistors
9.8 State the different transistor configurations
9.9 Sketch the characteristics of CB, CE configurations.
9.10 Compare the performance characteristics of CB and CE configurations.
9.11 List the manufacturer specifications of PN, Zener diode and Transistor.
1. **Electric Current - Ohm’s Law - Resistance:**

2. **Conducting Materials**
 Hardening, Annealing - Low Resistive Materials – requirements – properties and applications of copper and aluminium - Comparison between Copper and Aluminium - ACSR Conductors, AAAC, -High Resistive Materials - properties – applications.

3. **Heating Effects of Electrical Current**
 Mechanical Equivalent of Heat – Heat produced due to flow of current in resistance-applications.

4. **Magnetic Effects of Electric Current**

5. **Electro Magnetic Induction**
 Faraday’s laws - Dynamically and statically induced E.M.F -Lenz’s Law & Fleming’s right hand rule -Self and mutual inductance - Co-efficient of coupling - Inductances in series -Energy stored in a magnetic field - Energy stored per unit volume - Lifting power of magnet.

6. **Electrostatics**
 Atom,Ion,positive and Negative charges -Laws of Electrostatics – coulomb - Permittivity - Electrostatic induction -Electrostatic field - lines of force -Comparison of electrostatic and magnetic lines of force -Strength of electric field- Flux density -Gauss theorem - Electric potential - potential difference –Polarisation - Dielectric Loss - Application of Dielectrics – Dielectric strength - dielectric constant - Capacitance -Capacitor - types - Capacitors in series and parallel – color codes of resistors and capacitors as per BIS.

7. **Insulating Materials**
 Properties -Insulation resistance - factors effecting Insulation resistance - Classification of Insulation materials - properties - applications.

8. **Special Purpose Materials**
 Protective materials – Thermocouple - Bi-Metals- Soldering- Fuses -Galvanizing and Impregnating.

9. **Semi-conductor Devices**
Intrinsic and extrinsic semi-conductors, ‘P’ and ‘n’ type materials, PN Junction, forward and reverse bias- Zener diode, Zener diode characteristics - formation of PNP and NPN transistors. Transistor configurations - CB, CE - Input and output characteristics of CB,CE - comparison of CB,CE, configurations.

REFERENCE BOOKS

1. Electrical Technology Vol.I by B.L.Theraja
2. Electrical Technology by Hughes
4. Electrical Engg.Materials G.V. Baradhwajan
5. Electronic Components- Dr. K.Padmanabham
6. ElectronicComponents-D.V.Prasad
8. Basic electronics and linear circuits – Bhargava, TMH Publishers
9. Electronic Principles - Malvino
MECHANICAL WORKSHOP

Subject Title : Mechanical Workshop
Subject Code : EE-106
Periods/Week : 03
Periods/year : 90

OBJECTIVES

Upon completion of the practice the student - will be able to

1.0. DEVELOP CARPENTRY SKILLS
 1.1 Practice on planning sawing and chiselling
 1.2 Prepare a Half Lap joint
 1.3 Prepare a Dovetail joint
 1.4 Prepare a Mortise joint
 1.5 Prepare a 20 cm x 15 cm Teakwood Switch board with hinges and botton hook
 1.6 Fix the laminate sheet to the above box and cut suitable holes to mount one flush type switch, socket

2.0. DEVELOP FITTING SKILLS
 2.1 Cut a metal conduit, G.I. pipe and solid using hack saw
 2.2 Thread cutting G.I. pipe, metal conduit and solid rod using Die set
 2.3 Internal thread cutting using Tap set reamers
 2.4 Thread Cleaning
 2.5 Make a hexagonal nut from a round rod

3.0. DEVELOP WELDING SKILLS
 (Resistance and Arc welding):
 3.1 prepare a job and make a Spot weld.
 3.2 prepare a job and make a seam weld.
 3.3 prepare a job and make a butt weld.
 3.4 Prepare a job and make a lap joint and finish it using grinder
 3.5 Prepare the job and make T joint
ENGINEERING DRAWING

Subject Title : Engineering Drawing
Subject Code : EE – 107
Periods/Week : 06
Periods Per Year : 180

TIME SCHEDULE

<table>
<thead>
<tr>
<th>S. No</th>
<th>Major Topics</th>
<th>Periods</th>
<th>Weightage of marks</th>
<th>Short Answer Questions</th>
<th>Essay type Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Importance of Engineering Drawing</td>
<td>03</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Drawing instruments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Free hand lettering & Numbering</td>
<td>06</td>
<td>5</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Dimensioning Practice</td>
<td>12</td>
<td>5</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Geometrical construction</td>
<td>24</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Projection of points, Lines, Planes and solids</td>
<td>30</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Orthographic Projection</td>
<td>30</td>
<td>15</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Sectional views</td>
<td>18</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Auxiliary views</td>
<td>06</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Pictorial drawing</td>
<td>30</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Development of surfaces</td>
<td>21</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Total 180 80 04 06

OBJECTIVES

On completion of the study of this subject the student should be able to

1.0 Understand the Importance of Engineering Drawing
1.1 State the importance of drawing as an engineering communication medium.
1.2 State the necessity of I.S. Code of practice for Engineering Drawing.
1.3 Appreciate the linkages between Engineering drawing and other subjects of study in Diploma course.

2.0 Use Engineering Drawing Instruments
2.1 Select the correct instruments and draw lines of different orientation.
2.2 Select the correct instruments and draw small and large Circles.
2.3 Select the correct instruments for measuring distances on the drawing.
2.4 Use correct grade of pencil for different types of lines, thickness and
given function.
2.5 Select and use appropriate scales for a given application.
2.6 Identify different drawing sheet sizes as per I.S. and Standard Lay-
outs.
2.7 Prepare Title block as per I.S. Specifications.
2.8 Identify the steps to be taken to keep the drawing clean and tidy.

3.0 Write Free Hand Lettering and Numbers
3.1 Write titles using sloping lettering and numerals as per B.I.S (Bureau of Indian
standards)
3.2 Write titles using vertical lettering and numerals as per B.I.S.
3.3 Select suitable sizes of lettering for different layouts and applications.
3.4 Make the use of lettering stencils.

4.0 Understand Dimensioning Practice
4.1 State the need of dimensioning the drawing according to accepted
standard.
4.2 Define “Dimensioning”.
4.3 Identify notations of Dimensioning used in dimensioned drawing.
4.4 Identify the system of placement of dimensions in the given dimensioned
drawing.
4.5 Dimension a given drawing using standard notations and desired
system of dimensioning.
4.6 Dimension standard features applying necessary rules.
4.7 Arrange dimensions in a desired method given in a drawing.
4.8 Identify the departures if any made in the given dimensioned drawing with reference
to SP-46-1988, and dimension the same correctly.

5.0 Apply Principles Of Geometric Constructions
5.1 Divide a given line into desired number of equal parts internally.
5.2 Draw tangent lines and arcs.
5.3 Construct a Hexagon from the given data.
5.4 Define ellipse, parabola hyperbola, involute, cycloid, and helix.
5.5 Construct ellipse by concentric circles method and using a paper trammel.
5.6 Construct parabola, rectangular hyperbola involute, cycloid and helix from the given
data.
5.7 State the applications of the above constructions in
Engineering practice.

6.0 Apply Principles of Projection of points, lines & planes
6.1 Explain the projection of a point with respect to reference planes (HP
& VP)
6.2 Explain the projections of straight lines with respect to two reference
planes.
6.3 Explain the projections of perpendicular planes.

7.0 Apply principles of Orthographic Projection
7.1 Explain the principles of Orthographic projection with simple
sketches.
7.2 Prepare an Engineering Drawing of a given simple Engineering part in first angle projection.
7.3 Draw the orthographic view of an object, given its pictorial drawing.
7.4 Sketch the minimum number of views needed to represent a given object fully.
7.5 Identify the object, from a number of orthographic views given.
7.6 Supply the missing view when given two other views of an object.

8.0 Appreciate the need of Sectional Views
8.1 Explain the need to draw sectional views.
8.2 Select the section plane for a given component to reveal maximum information.
8.3 Draw sectional view for the component in 8.2.
8.4 Apply conventional practices and identify the parts, which should not be shown in section while drawing sectional views.
8.5 Make conventional representation of Engineering materials as per latest B.I.S. Code.
8.6 Apply principles of hatching.
8.7 Draw simple sections (full, half, revolved and removed part) for a range of simple Engineering objects.
8.8 Draw the component from a given set of sectional views.

9.0 Understand the need for Auxiliary Views
9.1 State the need of Auxiliary views for a given Engineering Drawing.
9.2 Sketch the auxiliary views of a given Engineering component to indicate the true shape and size of component.
9.3 Draw the auxiliary views of a given Engineering drawing.

10.0 Prepare Pictorial Drawings
10.1 State the need for commonly used type of pictorial drawings.
10.2 Given the objects, draw their orthographic views.
10.3 State the need of isometric scale and isometric projection.
10.4 Prepare Isometric projections for the given orthographic drawings.
10.5 Prepare oblique drawing cavalier, cabinet of simple Engineering objects from the given data.
10.6 Identify the correct pictorial views from a set of Orthographic drawings.

11.0 Prepare Development Drawings
11.1 State the need for preparing development drawing.
11.2 Prepare development of simple Engineering objects using parallel line and radial line method.
11.3 Prepare development of Surface of Engineering components like trays, funnel, 90° elbow & rectangular duct.
COURSE CONTENTS

NOTE
1. I.S. / B.S Latest Specification should invariably be followed in all the topics.
2. A-3 Size Drawing Sheets are to be used for all Drawing Practice Exercises.

Understand the importance of Engineering Drawing

Explanation of the scope and objectives of the subject of Engineering Drawing its importance as a graphic communication
Need for preparing drawing as per standards – SP-46 –1988
Mention of I.S.O and B.I.S-Role of drawing in -engineering education
Link between Engineering drawing and other subjects of study.

Engineering drawing Instruments

Classifications: Basic Tools, tools for drawing straight lines,
tools for curved lines,
tools for measuring distances and special tools like mini drafter & drafting machine
Mentioning of names under each classification and their brief description
-Scales:
Recommended scales reduced & enlarged
Lines: Types of lines, selection of line thickness - Selection of Pencils
Sheet Sizes: A0, A1, A2, A3, A4, A5, Layout of drawing sheets in respect of A0, A1, A3 sizes,
Sizes of the Title block and its contents - Care and maintenance of Drawing Sheet,
To draw “Lay out of sheet “ – and as per SP-46-1988 to a suitable scale.
Simple Exercises on the use of Drawing Instruments.
Importance of Title Block.
Drawing Plate 1: (Consisting of about two exercises)
- To draw geometric shapes (standard) using drawing instruments -To draw layout of sheet and title block.

Free hand lettering & numbering

Importance of lettering – Types of lettering
Guide Lines for Lettering
Recommended sizes of letters & numbers –
Advantages of single stroke or simple style of lettering –
Use of lettering stencils
Drawing plate 2: (Consisting of about 5 to 6 exercises)
- To print the table of Types of lines as per latest ISI Standards.
- To print the table of “Recommended sizes of letters and numerals” – as per Standards.
Selection of suitable size of letters and numbers and draw the given titles, phrases using both vertical and sloping styles.
Dimensioning practice

Purpose of engineering Drawing, need of I.S.I code in dimensioning –Shape description of an Engineering object -Definition of Dimensioning size description -Location of features, surface finish, fully dimensioned Drawing -Notations or tools of dimensioning, dimension line extension line, leader line, arrows, symbols, number and notes, rules to be observed in the use of above tools -Placing dimensions: Aligned system and unidirectional system (SP-46-1988)-Arrangement of dimensions Chain, parallel, combined progressive, and dimensioning by co-ordinate methods-The rules for dimensioning standard, features “Circles (holes) arcs, angles, tapers, chamfers, and dimension of narrow spaces.

Drawing Plate 3: (Consisting of above 12 to 15 exercises)

Dimensioning a given drawing using the above tools, rules and systems of dimensioning.
Dimensioning practice in various methods of dimensioning stated above.
Dimensioning, given common features listed.
Exercise in identifying the departures made in a given dimensioned drawing from I.S.I. Code of practice.

Geometric Construction

Division of a line: to divide a straight line into given number of equal parts internally examples in Engineering application.

Construction of tangent lines: to draw tangent lines touching circles internally and externally.

Construction of tangent arcs
i) To draw tangent arc of given radius to touch two lines inclined at given angle (acute, right and obtuse angles).
ii) Tangent arc of given radius touching a circle or an arc and a given line.
iii) Tangent arcs of radius R, touching two given circles internally and externally.

Hexagon: Inscribing a Hexagon in a circle of given dia and circumscribing a given circle, using
i) Set squares.
ii) Compass – given a side to construct a Hexagon using set squares or compass.

i) Concentric circles method.
ii) Paper trammel, method.
iii) Construction of parabola by rectangular method.
iv) Construction of Rectangular Hyperbola when given the position of a point on the curve.

General Curves: Involute, Cycloid and Helix, explanations as locus of a moving point, their Engineering application, viz, Gear tooth profile, screw threads, springs etc. Their construction:

Drawing Plate: 4 (Consisting of about 12 to 15 exercises)
Projection of points, lines and planes.

Projecting a point on two planes of projection
Projecting a point on three planes of projection
Projection of straight line.
 (a) Parallel to one or both the planes.
 (b) Contained by one or both the planes.
 (c) Perpendicular to one of the planes.
 (d) Inclined to one plane and parallel to other planes.

Projection of perpendicular planes
 (a) Plane perpendicular to both HP and VP
 (b) Plane perpendicular to HP and parallel to VP and Vice versa.
 (c) Plane perpendicular to HP and inclined to VP and vice versa.

Projection of Regular solids in simple positions

7.0 Orthographic Projections
Meaning of Orthographic Projection - Using a viewing Box and a model – Number of views obtained on the six faces of the box. - Neat sketches of only 3 views for describing object - Concept of front view, top views, and sides view sketching these views for a number of Engg. Objects - Explanation of “First angle projection”. – Positioning of three views in First angle projection - Projection of points as a means of locating the corners of the surfaces of an object – Use of miter line in drawing a third view when other two views are given - Method of representing hidden lines - Selection of minimum number of views to describe an object fully.

Drawing Plate 5: (Consisting of about 10 to 12 Number of exercises)
Given an engineering object(s) to sketch the three views.
Given the pictorial view of simple objects to sketch the three views in First and third angle projections.
Given the object (pictorial Drawing) and 3 views identifying the surface on the views with reference to the object.
Given two views and a simple object – Draw the mission of third view.

Drawing Plate 6: (Consisting of about 6 to 8 exercises)
Given the engineering objects (Pictorial views) Drawing the three views in First angle projection.
Identifying the object, when given a number of objects and the orthographic views (matching exercises).

8.0 Sectional views
Need for drawing sectional views – what is a sectional view - Location of cutting plane – Purpose of cutting plane line – Selection of cutting plane to give maximum information (vertical and offset planes) - Meaning of Full, half revolved and removed, local or partial sections - Hatching – adjacent components (two or more) large areas, a part in different parallel planes- Conventional practices to represent sections of ribs, shafts, bolts, nuts, screws, rivets, spokes, webs, keys, cotters, thin sections etc., as per B.I.S. specifications – Conventional representation of materials as per B.I.S. Standards.

Drawing Plate 7: (Consists of about 8 to 10 exercises)
Preparing conventional representation of a materials as per latest/ B.I.S. Code.
Given the object (pictorial or orthographic view), and cutting plane line to draw sectional view.
Given the object to select the correct cutting plane line and then to draw the sectional view.
To identify the object when given number of objects and number of sectional views (Matching exercise.)

9.0 **Auxiliary views**

Need for drawing auxiliary views - Explanation of the basic principles of drawing an auxiliary views explanation of reference plane and auxiliary plane - Partial auxiliary view.

Drawing plate No.8: (Consisting of about 8 exercises)
Given a set of objects, state whether an auxiliary view is needed – if required sketch the same.
Given the object and its auxiliary view (partial or full, to sketch the auxiliary plane on the pictorial view)

10.0 **Pictorial Drawings**

Brief description of different types of pictorial drawing viz., Isometric, oblique, and perspective – Use of these - Isometric drawings: Iso axis, angle between them, meaning of visual distortion in dimensions - Need for an isometric scale, difference between Isometric scale, and ordinary scale difference between Isometric drawing (or view, and Isometric Projection) and orthographic drawing - Isometric and non-Isometric lines - Isometric drawing of common features like rectangles, circular - shapes, non-isometric lines, Use of box and offset construction - Oblique drawings: Their use - Cavalier and cabinet drawings – Oblique drawing of common features like rectangular, circular and inclined, surfaces - Selection of the face of the object to be included in the front view.

Draw plate 9: (Consists of about 10 to 12 exercises)
Given the Orthographic views to draw isometric views,
Construction of isometric scale.
Given the Orthographic views to draw isometric Projections.
Given the Orthographic views to draw cavalier Drawings.
Given the Orthographic views to draw cabinet Drawings.

11.0 **Development of Surfaces**

Need for preparing development of surface with reference to sheet metal
Work - Concept of true length of a line with reference to its Orthographic projection when the line is (i) parallel to the plane of projection (ii) When it is inclined to one principal and parallel to the other - Development of simple Engineering common solids like Cubes, prisms, Cylinders, Cones, Pyramid (sketches only) - Types of Development: Parallel line and radial line development - Procedure of drawing development, drawings of trays funnels, 90° elbow pipes and rectangular ducts.

Drawing plate No. 10: (Consists of about 10 exercises)
Development drawings by “ Parallel – line “ method such as prisms and Cylinders (Truncated).
Development drawing by “Radial – line “ method such as cones and pyramids
(Truncated)
Development drawings of a tray: funnel 90° elbow and rectangular duct.

REFERENCE BOOKS

Engineering Drawing by N.D.Bhatt.

SP-46-1998 – Bureau of Indian Standards.

Introduction to Engineering Drawing R.C.Mouli – V.Rama Rao –
M. Venkateswarlu.
PHYSICS LAB
(Common to All Courses)

<table>
<thead>
<tr>
<th>Subject title</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>:</td>
<td>Physics LAB</td>
</tr>
<tr>
<td>Subject code</td>
<td>EE -108</td>
</tr>
<tr>
<td>Periods / week</td>
<td>03</td>
</tr>
<tr>
<td>Total periods / Year</td>
<td>45</td>
</tr>
</tbody>
</table>

List of Experiments
<table>
<thead>
<tr>
<th>No. of Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Vernier calipers</td>
</tr>
<tr>
<td>2. Screw gauge</td>
</tr>
<tr>
<td>3. Parallelogram law of forces and Triangle law of forces (verification)</td>
</tr>
<tr>
<td>4. Simple pendulum</td>
</tr>
<tr>
<td>5. Velocity of sound in air (Resonance method)</td>
</tr>
</tbody>
</table>
| 6. Focal length and focal power of convex lens
 (separate and combination) | 3 |
| 7. Refractive index of solid using traveling microscope | 3 |
| 8. Surface tension of liquid using traveling microscope | 3 |
| 9. Coefficient of viscosity by capillary method | 3 |
| 10. Boyle’s law verification | 3 |
| 11. Meter bridge | 3 |
| 12. Mapping of magnetic lines of force | 3 |
| Revision | 6 |
| Test | 3 |
| **Total** | 45 |
SPECIFIC OBJECTIVES OF PHYSICS LABORATORY

1. **VERNIER CALIPERS** - To determine the volumes of a cylinder and a sphere

2. **SCREW GAUGE** – To determine the thickness of a glass plate and area of cross section of a wire

3. **PARALLELOGRAM LAW AND TRIANGLE LAW VERIFICATION** – To verify laws and determination of unknown weight of an object

4. **SIMPLE PENDULUM** – To determine the value of acceleration due to gravity using law of length and to draw l-T and l- T² curves.

5. **VELOCITY OF SOUND IN AIR** – To determine velocity of sound in air at room temperature and to calculate its value at 0°C using two tuning forks.

6. **FOCAL LENGTH AND FOCAL POWER OF CONVEX LENSES** – To find focal length and focal power of a single convex lens and combination of convex lenses respectively using U-V method and draw U-V and 1/U – 1/V curves for single convex lens experiment only.

7. **REFRACTIVE INDEX OF A SOLID** – To determine the refractive index of material of a glass slab using traveling microscope.

8. **SURFACE TENSION OF A LIQUID** – To determine the surface tension of water using traveling microscope (Capillary method.)

9. **VISCOSITY OF A LIQUID** – To determine viscosity of water by using capillary method

10. **BOYLE’S LAW VERIFICATION** – To experimentally verify Boyle’s law employing a Quill tube.

11. **METER BRIDGE** – To find specific resistance of the material of a wire

12. **MAPPING OF MAGNETIC LINES OF FORCE** – To locate the positions of neutral points using N-S and N-N method with the help of magnetic compass
CHEMISTRY LAB

Subject Title : Chemistry LAB (COMMON TO ALL)
Subject Code : EE - 109
No of periods : 03 (Per week)
Total periods : 45

List of Experiments

1. Introduction to volumetric analysis
2. Preparation of Standard Na\textsubscript{2}CO\textsubscript{3} solution
3. Estimation of HCl solution using Std. Na\textsubscript{2}CO\textsubscript{3} solution
4. Estimation of NaOH using Std. HCl solution
5. Estimation of Mohr’s Salt using Std. KMnO\textsubscript{4} solution
6. Determination of acidity of water sample
7. Determination of alkalinity of water sample
8. Determination of total hardness of water using Std. EDTA solution
9. Estimation of Chlorides present in water sample
10. Estimation of Dissolved Oxygen (D.O) in water sample

DEMONSTRATION EXPERIMENTS

11. Determination of pH using pH meter
12. Determination of conductivity of water
13. Determination of turbidity of water
14. High volume air sampler
15. Estimation of total solids present in water sample
Revision
INFORMATION TECHNOLOGY LAB

Subject Title : Information Technology Lab
Subject Code : EE -110
Periods/Week : 04
Periods per Semester : 120

SPECIFIC OBJECTIVES

On completion of this subject the student would be able to

- Identify the various components of a Computer system
- Differentiate between hardware and software
- State the functions of each component of a computer system
- State the configuration of a computer system
- Identify the various peripherals
- Know how to open an application program
- Know how to create a folder in a specified location
- Open MS-word and Identify the components on the screen
- Create a document using MS-word and save it
- Create a table using MS-Word and save it
- Create mailing letters using mail merge tool of MS-word
- Open MS-Excel and identify the components on the screen
- Create a Worksheet in MS-Excel and save it
- Generate a Chart using the data in Excel-worksheet
- Automate calculations in a worksheet using formula
- Sort and filter data in a worksheet
- Create a simple Power point presentation for a small topic
- Backup required files and folders to a CD-ROM
- Introduction to the internet technology and imparting training to use searching of required sites and using e-Mails etc..
COURSE CONTENT:

1. Study of a computer system
2. Familiarise with basic MS-WINDOWS facilities like opening programs, searching, creating folders, copying and shifting data, etc.
3. Create a formatted word document using MS-Word
4. Familiarise with spell checker facility of MS-Word
5. Print the Word document using page setup and Print facilities
6. Create a soft copy of a given table using MS-Word
7. Create mailing letters for a given information using MS-Word
8. Create a soft copy of the given statistical data using MS-Excel
9. Generate Appropriate Chart for the statistical data using MS-Excel
10. Generate the soft copy of a worksheet using formula facility of MS-Excel
11. Create a soft copy of a simple database using Excel. Run sort and filter facilities for the database
12. Create a power point presentation for a simple technical topic using MS-PowerPoint
13. Create a backup CD for a data using NERO or similar CD writing software
14. Create an user account on the Internet and e-mail and sending a document to from a given e-mail address. To another e-Mail ID as attachment.
15. Using different search engines finding required sites to collect information on engineering related topics including down loading the contents.
OBJECTIVES

Upon completion of the practice the student - will be able to

1.0. WIRING TOOLS AND ACCESSORIES
 1.1 Study the following electrical wiring tools:
 1. Screw drivers
 2. Pliers
 3. Drilling machines
 4. Rawl plug jumper, and poker
 5. Voltage/line tester
 6. Splicers (insulation remover)
 7. Standard Wire gauge
 1.2 Study different types of Electrical Wiring accessories
 1. Switches
 2. Ceiling roses
 3. Lamp holders and adopters
 4. Sockets
 5. Plug
 6. Fuses
 1.3 Study different types of main switches (DP mains, ICDP, ICTP)
 1.4 Study of MCB’s
 1.5 Study different types of wires and cables (1/18,3/20,7/20, H, SL,, HSL)

2.0. ELECTRICAL WIRING JOINTS
 2.1 Perform straight joint and solder
 2.2 Perform T joint and solder
 2.3 Perform Western union joint and solder
 2.4 Perform Married joint and solder
 2.5 Perform pigtail joint and solder

3.0. SIMPLE LAMP CIRCUITS
 3.1 One lamp controlled by one switch with PVC surface conduit system
 3.2 Stair case wiring
 3.3 Two lamps controlled by two switches with PVC surface conduit system
 3.4 One lamp controlled by one switch and provision of 2/3-pin socket.
 3.5 Prepare extension board with series lamp test, indicator, fuse and 2/3 pin socket.

4.0. SOLDERING PRACTICE
 4.1 Familiarisation and use of various soldering tools and components
 4.2 Solder simple electronic circuits with discrete components and IC’s
 4.3 Use instant soldering gun
 4.4 Use solder squeezer on electronic PCB’s
5.0 FIRST AID
5.1 Know the procedures of First aid for shock treatment to an electrocuted person
5.2 Understand electrical fire extinguisher
5.3 Demonstrate Types of fire extinguishers.

6.0 EARTHING
6.1 Perform pipe earthing
6.2 Perform plate earthing

III SEMESTER
Subjectwisemodificationtableforrestructuringofthesyllabus.

Branch…ELECTRICAL & ELECTRONICS ENGINEERING

<table>
<thead>
<tr>
<th>Sub-Code as per C-05</th>
<th>EE-301</th>
<th>Sub-Code as per C-09</th>
<th>EE-301</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the subject as per C-05</td>
<td>Engineering Mathematics-II</td>
<td>Name of the subject as per C-09</td>
<td>Engineering Mathematics-II</td>
</tr>
<tr>
<td>No. of periods allotted as per C-05</td>
<td>75</td>
<td>No. of periods allotted as per C-09</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S.no</th>
<th>Name of the Chapter</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Integration- Methods of Integration</td>
<td>00</td>
<td>Added</td>
<td>+18</td>
<td>18</td>
<td>Shifted from I year</td>
</tr>
<tr>
<td>4</td>
<td>Definite Integrals and its Applications</td>
<td>14</td>
<td>00</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Numerical Integration</td>
<td>00</td>
<td>Added</td>
<td>+03</td>
<td>03</td>
<td>Useful in numerical calculations/Engineering applications</td>
</tr>
<tr>
<td>6</td>
<td>Differential Equations</td>
<td>25</td>
<td>00</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Laplace transforms</td>
<td>18</td>
<td>Deleted</td>
<td>-18</td>
<td>00</td>
<td>Not necessary for students at this level</td>
</tr>
<tr>
<td>8</td>
<td>Fourier series</td>
<td>18</td>
<td>Deleted</td>
<td>-18</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>75</td>
<td>-15</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Subject title : Engineering Mathematics -II
Subject code : EE-301
Periods per week : 04
Periods / Semester : 60

TIME SCHEDULE

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Major Topics</th>
<th>Periods</th>
<th>Weightage of Marks</th>
<th>Short Type</th>
<th>Essay Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unit –I Integration Methods of Integration</td>
<td>18</td>
<td>35</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Unit-II Definite Integrals and Applications</td>
<td>14</td>
<td>26</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Numerical Integration</td>
<td>03</td>
<td>05</td>
<td>-</td>
<td>½</td>
</tr>
<tr>
<td>4</td>
<td>Unit-III Differential Equations</td>
<td>25</td>
<td>44</td>
<td>3</td>
<td>3 ½ 2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>60</td>
<td>110</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>

Objectives:

Unit-I

Methods of Integration:

1.0 Understand the concept of Indefinite integral:

1.1 Explain that \(\frac{d}{dx} f(x) = F(x) \) \(F(x)dx \) \(f(x) \) \(c \), where \(c \) is arbitrary constant.

1.2. State the indefinite integral of standard functions and properties of Integrals with examples.

1.3. Integrate simple functions using the rule for \((u + v) \) \(dx \) and \(ku \) \(dx \) where \(k \) is constant and \(u, v \) are functions of \(x \).

1.4. Evaluate arbitrary constant and determine particular integrals in problems of the following type:

 i) Find the equation of the curve passing through \((1, 1)\) and whose slope at any point \((x, y)\) is \(2x^2 + 1/ x\).

 ii) If the velocity at time ‘t’ is given by \(V = T + \dot{3} \) find the displacement “S” at time \(t = k \) given that \(S = 0 \) when \(t = 0 \).

1.5. Explain various methods of integration with examples.

1.6. Integrate simple functions by decomposition of the integrand

1.7. Integrate simple functions of the following type by substitution.

 i) \(f(ax + b) \) \(dx \) where \(f(x) \) \(dx \) is in standard form.

 ii) \([f(x)]^n f(x) \) \(dx \)

 iii) \(f(x)/[f(x)] \) \(dx \)

 iv) \(f[g(x)] g(x) \) \(dx \)

1.8. Explain finding the Integrals of \(\tan x, \cot x, \sec x \) and \(cosec x \) using the above.

1.9. Evaluate the integrals of the form \(\sin^m \) \(\cos^n \) \(dx \) where \(m \) and \(n \) are
positive integers
1.10. Evaluate Integrals of powers of \(\tan x \) and \(\sec x \).
1.11. Evaluate the integrals of the form \(e^t [f(x) + g(x)] \) \(dx \).
1.12 Evaluate the Standard Integrals of the functions of the type

\[
\begin{align*}
\text{i)} & \quad \frac{1}{a^2 x^2} + \frac{1}{a^2 x^2} + \frac{1}{a^2 x^2} + \frac{1}{a^2 x^2} \\
\text{ii)} & \quad \frac{1}{\sqrt{a^2 x^2}} + \frac{1}{\sqrt{a^2 x^2}} + \frac{1}{\sqrt{a^2 x^2}} + \frac{1}{\sqrt{a^2 x^2}} \\
\text{iii)} & \quad \sqrt{a^2 x^2} - \sqrt{a^2 x^2} - \sqrt{a^2 x^2} - \sqrt{a^2 x^2}
\end{align*}
\]

1.13. Evaluate the Integrals of the type \(\frac{1}{a} \int b \sin x \, dx \), \(\frac{1}{a} \int b \cos x \, dx \) and \(\frac{1}{a} \int b \sin x \, dx \).
1.14. Evaluate integrals using integration by parts with examples. State the Bernoulli’s rule for evaluating the integrals of the form \(u^v \).

Unit-II
2.0 Definite Integrals and its applications

2.1 Understand the concept of definite integrals and Define the definite integral over an interval.
2.2 State various properties of definite integrals.
2.3 Evaluate some problems on definite integrals using the above properties.
2.4 Identify a definite integral as a limit of sum by considering an area.
2.5 State the fundamental theorem of integral calculus.
2.6 Find the areas under plane curves and area enclosed between two curves using integration.
2.7 Obtain the volumes of solids of revolution.
2.8 Obtain the mean value and root mean square value of the functions in any given interval.

3.0 Numerical Integration
3.1 Explain the Trapezoidal rule, Simpson’s \(1/3 \) rules for approximation of integrals and provide some examples.

Unit-III
4.0 Differential Equations
4.1 Definition of a Differential equation – order, degree and solution of a differential equations – formation of differential equations - solutions of ordinary differential equations of the first order and first degree of the type:

i. Variables Separable.
ii. Homogeneous Equations and equations reducible to homogeneous form.
iii. Exact Differential Equations
iv. Linear differential equation of the form \(dy/dx + P(x) = Q(x) \), where \(P \) and \(Q \) are functions of \(x \) or constants.
v. Bernoulli’s Equation (Reducible to linear form.)

4.2 Solution of second order differential equation of the type \(f(D)y = 0 \)
4.3 Solution of \(n \)th order differential equation of the type \(f(D)y = X \) where \(f(D) \) is a polynomial of \(n \)th order and \(X \) is a function of the form \(f(x) = k, e^{ax}, \sin x, \cos x, e^{ax} V, x^n \sin x \) or \(\cos x \), where \(V \) is a function of \(x \).
1. Methods of Integration.

Integration regarded as reverse of differentiation – Indefinite integral and constant of integration – standard forms. Integration by decomposition of the integrand into simple rational, algebraic functions-Integration by substitution or change of variable. Integrals of the form \(\sin^m \theta \cos^n \theta \), where \(m \) and \(n \) are positive integers. Integrals of \(\tan x, \cot x, \sec x, \csc x \) and powers of \(\tan x, \sec x \) by substitution.

Integrals of:

\[
\begin{align*}
&i) \frac{1}{a^2} x^2, \frac{1}{x^2} x^2, \frac{1}{a^2} x^2 \\
&ii) \frac{1}{\sqrt{a^2} x^2}, \frac{1}{\sqrt{a^2} x^2} x^2, \frac{1}{a^2} x^2 \\
&iii) \sqrt{x^2} a^2, \sqrt{x^2} a^2, \sqrt{a^2} x^2 \\
\end{align*}
\]

Integration by parts including Bernoulli’s rule.

Unit-II

2. Definite Integral and its applications:

Definite integral – Properties of definite integrals, evaluation of simple definite integrals. Definite integral as the limit of a sum. Area under plane curves – Area enclosed between two curves.

Volumes of solids of revolution. Mean value and RMS value of a function in a given interval.

3. Numerical Integration:

Trapezoidal rule, Simpson’s 1/3 rules for approximation of Integrals.

Unit III

4. Differential Equations:

Definition of a differential equation-order and degree of a differential equation- formation of differential equations-solution of differential equation of the type first order, first degree, variable-separable, homogeneous and Equations reducible to Homogeneous, exact, linear differential equation of the form \(\frac{dy}{dx} + Py = Q \), Bernoullis equation, nth order linear differential equation with constant coefficients both homogeneous and non homogeneous and finding the Particular Integrals for the functions \(k, e^{ax}, \sin ax, \cos ax, e^{ax} V, x^n \sin ax \) or \(\cos ax \), where \(V \) is a function of \(x \).
Subjectwisemodificationtableforrestructuringofthesyllabus.

Branch…ELECTRICAL & ELECTRONICS ENGG.,

<table>
<thead>
<tr>
<th>Sl no</th>
<th>Name of the Chapter</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D.C. Circuits</td>
<td>20</td>
<td>Deleted Limitations of ohms law</td>
<td>03(added)</td>
<td>23</td>
<td>Topics covered in I year, not required at Diploma level</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nodal and Mesh Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Fundamentals of AC</td>
<td>15</td>
<td>No change</td>
<td>-------</td>
<td>15</td>
<td>No change</td>
</tr>
<tr>
<td>3</td>
<td>Single phase AC Circuits</td>
<td>25</td>
<td>Deleted J notation Method Resonant Frequency for Parallel Circuit</td>
<td>02(Added)</td>
<td>27</td>
<td>More Focus on Basics</td>
</tr>
<tr>
<td>4</td>
<td>Polyphase circuits</td>
<td>15</td>
<td>Deleted Measurement of 3 Phase Power</td>
<td>05(Deleted)</td>
<td>10</td>
<td>Added to EE-403</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>75</td>
<td></td>
<td></td>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>

C-09 – EE-302
ELECTRICAL CIRCUITS

Subject Title : ELECTRICAL CIRCUITS
Subject code : EE-302
Periods/Week : 05
Periods/semester : 75

TIME SCHEDULE

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Major Topics</th>
<th>Periods</th>
<th>Weightage</th>
<th>Short Questions</th>
<th>Essay Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>D.C Circuits</td>
<td>23</td>
<td>31</td>
<td>02</td>
<td>2 ½</td>
</tr>
<tr>
<td>2.</td>
<td>Fundamental of A.C.</td>
<td>15</td>
<td>19</td>
<td>03</td>
<td>01</td>
</tr>
<tr>
<td>3.</td>
<td>Single phase A.C. circuits</td>
<td>27</td>
<td>44</td>
<td>03</td>
<td>3 1/2</td>
</tr>
<tr>
<td>4.</td>
<td>Poly phase circuits</td>
<td>10</td>
<td>16</td>
<td>02</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>75</td>
<td>110</td>
<td>10</td>
<td>08</td>
</tr>
</tbody>
</table>

OBJECTIVES

On the completion of the course the student should be able to comprehend following

1.0 Understand Kirchoff’s laws and star delta Transformations and Network Theorems.

1.1 Differentiate between active and passive circuits.
1.2 Explain junction, branch and loop in circuits
1.3 State Kirchoff’s current law and voltage law and solve simple problems.
1.4 Explain star and delta circuits
1.5 Explain the concept of circuit transformation and equivalent circuits
1.6 Develop transformation formulae for star-delta transformations
1.7 Solve problems on star and delta transformations.
1.8 Explain ideal voltage source & ideal current source
1.9 Convert ideal voltage source to ideal current source and vice versa
1.10 State super position theorem and solve simple problems
1.11 State Thevenin’s theorem and solve simple problems.
1.12 State Norton’s theorem and solve simple problems
1.13 State maximum power transfer theorem and solve simple problems.

(All the theorems with reference to D.C only)
2.0 **Comprehend the relationship between quantities connected with Alternating current**

2.1 Define the terms pertaining to alternating quantities
2.2 Explain simple loop generator concept
2.3 State the relation between poles, speed and frequency
2.4 State the instantaneous value, maximum value, frequency, Time period, Average value, R.M.S value, form factor and peak factor.
2.5 Calculate the Average value, R.M.S value, form factor for half wave and Full wave rectified sine wave forms
2.6 Explain the term phase and phase difference
2.7 Using `J` operator perform vector addition, subtraction, multiplication and Division
2.8 Convert polar quantities to rectangular quantities and vice-versa

3.0 **Comprehend the single phase A.C. circuits**

3.1 Define the terms resistance, inductance and capacitance
3.2 Derive relationship between voltage and current in pure resistive, Inductive and capacitive circuits
3.3 Calculate the impedance, current; phase angle, power and power factor in R-L, R-C, & R-L-C series circuits.
3.4 Solve Problems on Series Circuits
3.5 Solve Problems on parallel circuits by
 a) Vector method and
 b) Admittance method
3.6 Define resonance in series and parallel electric circuits
3.7 Know difference between `series resonance` and `parallel resonance`
3.8 Calculate the resonance frequency for series resonant circuit
3.9 Define `Q` factor and state the importance of Q factor

4.0 **Poly Phase Circuits**

4.1 Define the term `Poly Phase`
4.2 Explain the methods of generation of 2 phase and 3 phase voltages and Currents express them by equation and phasor diagrams
4.3 State the relationship between
 a) 2 phase voltages and currents by equation and phasor diagrams
 b) 3 phase voltages and currents by equation and phasor diagrams
4.4 Derive the relation between line and phase values of current and voltage in 3 phase star and delta circuits
4.5 Derive the equation for power in 3 phase circuit
4.6 Solve numerical problems for 3 phase balanced loads
4.7 State the advantages of 3 phase system over single phase system
COURSE CONTENTS

I. Kirchoff’s Laws - Star - Delta Transformation - Network Theorems.
Active and Passive circuits - Junction, branch and loop in circuits, Kirchoff’s laws - Star - Delta configurations, Concept of transformation - Ideal Voltage, Ideal current source & Conversion - Superposition theorem, Thevenin’s Theorem - Norton’s Theorem, Maximum power transfer theorem with reference to D.C.-Problems on the above.

2. Fundamentals of A.C
Simple loop Generator - Relation between poles, speed and frequency, Sinusoidal emf equation - derivation - other wave forms, Definition of Alternating quantity, cycle, period, frequency, amplitude, instantaneous value and angular velocity - Average value - effective value/R.M.S value definitions and derivations - calculations of these values for half wave rectified sine wave, full wave rectified sine wave - forms-form factor-peak factor - Representation of alternating quantities by equation, graphs and phasor diagrams - Phase and phase difference - Applications of ‘J’ notation for alternating quantities - addition, subtraction, multiplication and division applied to alternating quantities - Polar form of representation of alternating quantities, transformation from polar to rectangle notations and Vice-versa

3. Single phase A.C. Circuits

4. Poly phase circuits
Definition of Poly phase - Generation of 2 phase and 3 phase EMF’s - Location of coils for obtaining required phase difference - Representation of 2 phase, 3 phase EMF’s by equations, graphs and phasors - phase sequence - Current in neutral in 2 phase and 3 phase system - Method of connection – star and delta - phasor diagram showing relation between phase and line quantities, Relation between phase and Line values of voltages and currents - power equation - Problems on 3 phase balanced circuits – advantages of poly-phase systems over single-phase systems.
REFERENCE BOOKS

1. Electrical Technology - Vol - I by B.L. Theraja
2. Introduction to Electrical Engg. By V.K.Mehtha
3. Electrical Technology by Hughes.
4. Problems in Electrical Engg. By Parker Smith
5. Network Theory by CL Wadhwa
6. Circuit Theory by AK Chakraborthy
Subject wise modification table for restructuring of the syllabus.

Branch… ELECTRICAL & ELECTRONICS ENGG.,

<table>
<thead>
<tr>
<th>S1 no</th>
<th>Name of the Chapter</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fundamentals of D.C. Generators</td>
<td>14</td>
<td>No Change</td>
<td>14</td>
<td></td>
<td>1. Content is more for DEEE student hence it is restructured.</td>
</tr>
<tr>
<td>2</td>
<td>Armature Reaction Characteristics & Applications of D.C.</td>
<td>14</td>
<td>1. Deletion – Various methods of</td>
<td>-01</td>
<td>16</td>
<td>1. Content is more for DEEE student hence it is restructured.</td>
</tr>
<tr>
<td></td>
<td>Machines</td>
<td></td>
<td>Commutation techniques.</td>
<td>+03</td>
<td></td>
<td>2. Shifted from EE-502 (3.4) due to restructuring.</td>
</tr>
<tr>
<td>3</td>
<td>Fundamentals of D.C. Motors</td>
<td>12</td>
<td>No Change</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Speed Control & Starters for D.C. Motors</td>
<td>10</td>
<td>No Change</td>
<td>10</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Testing of D.C. Motors</td>
<td>10</td>
<td>Deleted 5.5 Problems</td>
<td>-02</td>
<td>08</td>
<td>Problems are shifted to EE-306 - D.C. Machines Lab due to restructuring.</td>
</tr>
<tr>
<td></td>
<td>Batteries</td>
<td>Added From EE-304</td>
<td>15</td>
<td>15</td>
<td>Shifted from EE-304 due to restructuring.</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-------------------</td>
<td>----</td>
<td>----</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>60</td>
<td>+15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
D.C.MACHINES & BATTERIES

Subject Title : D.C. Machines & Batteries
Subject Code : EE - 303
Periods/Week : 05
Periods/Semester : 75

TIME SCHEDULE

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Major Topics</th>
<th>Periods</th>
<th>Weightage</th>
<th>Short Questions</th>
<th>Essay Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Fundamentals of D.C Generators</td>
<td>14</td>
<td>21</td>
<td>02</td>
<td>01 1/2</td>
</tr>
<tr>
<td>2.</td>
<td>Armature Reaction and Characteristics and applications of D.C Generator s.</td>
<td>16</td>
<td>26</td>
<td>02</td>
<td>02</td>
</tr>
<tr>
<td>3.</td>
<td>Fundamentals of D.C Motors</td>
<td>12</td>
<td>16</td>
<td>02</td>
<td>01</td>
</tr>
<tr>
<td>4.</td>
<td>Speed Control and Starters for D.C Motors</td>
<td>10</td>
<td>16</td>
<td>02</td>
<td>01</td>
</tr>
<tr>
<td>5.</td>
<td>Testing of D.C Motors</td>
<td>08</td>
<td>10</td>
<td>----</td>
<td>01</td>
</tr>
<tr>
<td>6.</td>
<td>Batteries</td>
<td>15</td>
<td>21</td>
<td>02</td>
<td>01 1/2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>75</td>
<td>110</td>
<td>10</td>
<td>08</td>
</tr>
</tbody>
</table>

OBJECTIVES

On completion of the study of the subject the student should be able to comprehend the following

1.0 Fundamentals of D.C Generators

1.1 State the method of dynamically induced E.M.F.
1.2 Fleming’s right hand rule.
1.3 Electromechanical energy conversion.
1.4 Explain the working of simple loop generator.
1.5 Principle of working of D.C generator.
1.6 State the functions of each part of D.C generator with neat sketches.
1.7 Explain the working of D.C Generator.
1.8 Types of windings --- (i) Lap (ii) Wave.
1.9 Classification of generators based on excitation.
1.10 Derive the E.M.F equation of D.C generator.
1.11 Voltage and Current equations for different types of D.C Generators.
1.12 State the losses incurred in the D.C machines.
1.13 Explain power stages in D.C. machine
1.14 Problems on the above.

2.0 Armature Reaction and Characteristics of D.C Generators.

2.1 State and explain the Armature reaction with sketches.
2.2 Explain the phenomenon of Demagnetization & Cross magnetization.
2.3 Derive the formula for AT_d, AT_c / Pole.
2.4 Solve the simple problems on AT_d, AT_c / Pole
2.5 State and explain Commutation.
2.6 State the methods of improving commutation and explain inetrpole method.
2.7 O.C.C, internal and external characteristics of
 (i) Separately excited (ii) Shunt
 (iii) Series (iv) Compound generators.
2.8 State the conditions for (i) Building up (ii) Non building up of E.M.F.
2.9 Calculation of Critical field resistance and critical speed from O.C.C
2.10 Explain the necessity of parallel operation.
2.11 Conditions for parallel operation of generators. (No- Problems)
2.12 Use of Equalizer ring in parallel Operation.
2.13 Applications of D.C generators.
2.14 Explain the working of welding Generator.

3.0 **Fundamentals of D.C Motors**
3.1 State and explain Fleming’s left hand rule.
3.2 Explain the working of D.C motors and classify them.
3.3 Explain the significance of back E.M.F and its formula.
3.4 Write the formulas for back E.M.F for different D.C motors.
3.5 Problems on E.M.F equation.
3.6 Torque equation of D.C motor.
3.7 Develop the formulas for armature torque (T_a), shaft torque (T_{sh}) and loss torque.
3.8 State the different losses in D.C motors and explain power stages in D.C. motor.
3.9 Problems on the above.
3.10 Explain and plot the electrical and mechanical characteristics of D.C Shunt, Series and compound motors.
3.11 Applications of D.C motors.

Speed Control and Starters for D.C Motors

4.1 Explain the necessity of speed control of DC Motors.
4.2 Explain the different methods (Flux, Armature and Voltage) of speed controls for D.C shunt motors.
4.3 State the advantages and disadvantages of above methods.
4.4 Explain the different methods of speed control for series motors
4.5 Explain the necessity of starter.
4.6 Explain 3-point starter with neat sketch.
4.7 Explain 4-point starter with neat sketch.
4.8 Drum controlled starter for Series Motor.

5.0 **Characteristics and Testing of D.C Motors**
5.1 State and explain the different performance curves.
5.2 Explain the method of conducting brake test on different types of D.C motors.
5.3 Explain the method of conducting Swinburne’s test.
5.4 Explain the method of conducting Hopkinson’s test.
6.0 **Understand Batteries**

6.1 Classification of Primary and Secondary cells.
6.2 Explain storage cells.
6.3 Name types of storage cells as lead acid, Nickel iron and Nickel cadmium
6.4 Write chemical reaction during charging and discharging of each.
6.5 Explain theory of lead acid cell
6.6 Select suitable materials for separators and containers.
6.7 Explain the effect of temperature on specific gravity of electrolyte.
6.8 State variations in specific gravity during charging And discharging
6.9 Explain the effect of Specific gravity on EMF
6.10 Explain construction of Nickel - iron cells
6.11 State chemical reactions during charging & discharging.
6.12 State applications of
 a) Lead acid cell b) Nickel iron cell c) Nickel cadmium cell
6.13 Comparison of
 a). Primary (Vs) Secondary Cell
 b). Lead-Acid (Vs)Nickel-Iron / Nickel –cadmium Cell
6.14 Explain charging of batteries by
6.15 State precautions during charging & discharging
6.16 Explain trickle charging
6.17 Explain indications of full charging
6.18 State capacity of a battery and factors affecting it Viz:
 a). Temperature b). Rate of discharge c).Density of electrolyte
6.19 State efficiency of a battery:
 a). Ampere - Hour Efficiency b). Watt - Hour Efficiency
6.20 Solve problems on the above
6.21 Define maintenance free battery
6.22 Differentiate between maintenance free batteries and lead-acid batteries
6.23 Explain the construction and action of maintenance free batteries
6.24 State the applications of maintenance free batteries

COURSE CONTENTS

1. **Fundamentals of D.C Generators**

 Dynamically induced E.M.F- Flemming’s right hand rule - electromechanical energy conversion - simple loop generator - principle of D.C generator- functions of each part of D.C generator with neat sketches- windings - (i) Lap (ii) Wave -Classification of generators based on excitation- E.M.F equation - losses incurred in the D.C machines -Voltage and Current equations for different types of D.C Generators- simple problems.

2. **Armature Reaction and Characteristics of D.C Gen.**

3. **Fundamentals of D.C Motors**
Fleming's left hand rule - working of D.C motors – classification - significance of back E.M.F. Write the formulas for back E.M.F for different D.C motors-Problems on E.M.F equation - Torque equation - Armature torque \((T_a)\) , shaft torque \((T_{sh})\) and loss torque - Different losses - electrical and mechanical characteristics of D.C Shunt, Series and compound motors. Applications of D.C motors.

4. **Speed Control and Starters for D.C Motors**
Necessity of speed control- different methods (Flux, Armature and Voltage) of speed controls for D.C shunt motors-State the advantages and disadvantages of above methods-different methods of speed control for series motors- problems -necessity of starter- 3-point starter, 4-point starter, Drum Controlled starter.

5. **Testing of D.C Motors**
Performance curves- brake test on different types of D.C . Motors - Swinburne’s Test - Hopkinson’s test.

6. **Batteries**

REFERENCE BOOKS
7. Electrical Technology - Vol - I by B.L. Theraja
2. Electrical Technology - Vol – II by B.L. Theraja
3. Electrical machines by P.S. Bhimbra
4. Electrical Machines by M.V. Deshpande
5. Electrical Machines by JB Gupta
Subject wise modification table for restructuring of the syllabus.

Branch…ELECTRICAL & ELECTRONICS ENGG.,

<table>
<thead>
<tr>
<th>Sl no</th>
<th>Name of the Chapter</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basics of Measuring Instruments</td>
<td>10</td>
<td>No Change</td>
<td>------</td>
<td>10</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>2</td>
<td>Electrical Measuring Instruments</td>
<td>30</td>
<td>Deletion: 2.15,2.16,2.17 topics are shifted to EE- 401 Addition : measurements of 3-Phase power using 2-wattmeter method.</td>
<td>25</td>
<td></td>
<td>1. Content is shifted to EE-401 due to restructuring. 2. Measurement of 3-phase power using 2-wattmeters included here from EE-302 due to restructuring.</td>
</tr>
<tr>
<td>3</td>
<td>Measurements of Resistance</td>
<td>10</td>
<td>Topic : 3.2(a) – is deleted</td>
<td>07</td>
<td></td>
<td>It is repeated one hence it is deleted due to restructuring.</td>
</tr>
<tr>
<td>4</td>
<td>Transducers & Sensors</td>
<td>10</td>
<td>Pressure Transducers & Radiation Sensors are deleted</td>
<td>08</td>
<td></td>
<td>Replaced by introducing the Electronic & Digital meters.</td>
</tr>
<tr>
<td>5</td>
<td>Electronic & Digital Instruments</td>
<td>---</td>
<td>Newly Added</td>
<td>10</td>
<td></td>
<td>As per the demand at Industry and Power Distribution Companies it is restructured.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>60</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ELECTRICAL & ELECTRONIC MEASURING INSTRUMENTS

Subject Title : Electrical & Electronic Measuring Instruments.
Subject Code : EE - 304
Periods/Week : 04

Periods/ Semester : 60

TIMESCHEDULE

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Major Topics</th>
<th>Periods</th>
<th>Weightage of Marks</th>
<th>Short Questions</th>
<th>Essay Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Basics of Measuring Instruments</td>
<td>10</td>
<td>11</td>
<td>02</td>
<td>½</td>
</tr>
<tr>
<td>2.</td>
<td>Electrical Measuring Instruments</td>
<td>25</td>
<td>49</td>
<td>03</td>
<td>04</td>
</tr>
<tr>
<td>3.</td>
<td>Measurement of Resistance</td>
<td>07</td>
<td>13</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>4.</td>
<td>Transducers and Sensors</td>
<td>08</td>
<td>13</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>5.</td>
<td>Electronic & Digital Instruments</td>
<td>10</td>
<td>24</td>
<td>03</td>
<td>1 ½</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>60</td>
<td>110</td>
<td>10</td>
<td>08</td>
</tr>
</tbody>
</table>

OBJECTIVES
On the completion of the course the student will be able to comprehend the following

1.0 Know the classification of different measuring instruments.
 1.1 Distinguish between absolute and secondary instruments.
 1.2 Differentiate among indicating, integrating and recording instruments.
 1.3 State the different types of Measuring Instruments according to Principle of Working.
 1.4 State the purpose and methods of obtaining deflecting, controlling and damping torques in indicating instruments.
 1.5 State the methods of supporting moving system.
 1.6 Describe the pointers and scales used in measuring instruments.

2.0 Understand the construction and working of different electrical measuring instruments.
 2.1 Describe the construction and working of Permanent Magnet Moving Coil Instrument (Voltmeter/Ammeter).
 2.2 State the applications of M.C Instruments.
 2.3 State the advantages and disadvantages of M.C Instruments.
 2.4 List the errors commonly occurring in moving coil instruments and state their remedies.
 2.5 Describe the construction and working of Moving Iron (Voltmeter / Ammeter) - Attraction type & repulsion type meters.
 2.6 List the errors commonly occurring in M.I. Instruments.
 2.7 State the accuracy and standard of the above meters.
 2.8 Compare M.C. and M.I. instruments.
2.9 Describe the methods of extending the range of ammeters and voltmeters with the help of shunts and multipliers.
2.10 Solve the problems on Shunts and Multipliers.
2.11 Describe the principles, construction and working of a dynamometer type ammeter, Voltmeter and wattmeter.
2.12 List the advantages and disadvantages of dynamometer instruments.
2.13 List the common errors in the Dynamometer Instruments.
2.14 With the circuit diagram explain the method of measuring power with wattmeter in Single - Phase circuit.
2.15 Measurement of 3-Phase Power using 2-Wattmeters and solve problems on balanced circuits.
2.16 Explain the principle, construction and working of a 1-phase induction type energy meter.
2.17 State Meter Constant and common error adjustments for 1-phase energy meter.
2.18 Describe the construction and connection of a 3-phase energy meter.
2.19 Explain the construction and working of Merz price M.D. Indicator.
2.20 Explain the construction and working of
(a) Single-phase dynamometer type P.F. meter.
(b) Weston (M.I) frequency meter.
(c) Weston synchroscope.
(d) Trivector meter

3.0 Understand the method of measurement of resistance.
3.1 Classify the resistance into Low-Medium and High Values.
3.2 Explain the construction and working of Megger.
3.3 Explain the method of using megger for the measurement of insulation resistance.
3.4 Explain the use of Megger for the measurement of earth resistance.
3.5 Explain the principle and Construction of Potentiometer and List its applications.

4.0 Transducers and Sensors
4.1 Classification of Transducers-factors influencing their choice.
4.2 Basic concept of Transducers and its applications.
4.3 Thermocouples, Thermister.
4.4 Basic concept of Sensors and its applications.
4.5 Semiconductor sensors.

5.0 Electronic & Digital Instruments
5.1 Explain the working of Rectifier type voltmeter and ammeter.
5.2 List the advantages of Digital Instruments Over Analog Instruments.
5.3 Explain the Working of ramp type Digital Voltmeter and mention its specifications.
5.4 Explain the Working of Digital Multimeter and mention its specifications.
5.5 Explain the Working of Single Phase Digital Energy meter with block diagram.
5.6 Explain the Working of Three Phase Digital Energy meter with block diagram.
COURSE CONTENTS

1. **Basic Measuring instruments:**
 Classification of instruments - Distinguish between absolute and secondary instruments.
 State and explain different types of torques (Deflection, Damping and Controlling torques) in the indicating instruments – Description of Pointers, Scales and supporting systems.

3. **Measurement of resistance:**
 Classification of resistances, Explain the construction and working of ohmmeter, megger – Explain the method of measuring the Insulation resistance and earth resistance using Megger - Explain the construction and working principle of Potentiometer.

4. **Transducers and Sensors:**

5. **Electronic & Digital Instruments:**

References:
1. Electrical and Electronic measuring instruments – by A. K.SAWHNEY.
2. Electrical Measurements – by E.W. Golding.
3. Electrical Technology -- by B. L. Theraja.
4. Modern Electronic Equipment – by Khandpur
5. Electrical and Electronic measuring instruments – by J.B. Gupta.
Subjectwisemodificationtableforrestructuringofthesyllabus.

Branch…ELECTRICAL & ELECTRONICS ENGG.,

<table>
<thead>
<tr>
<th>Sub-Code as per C-05</th>
<th>EE-305, EE-405</th>
<th>Sub-Code as per C-09</th>
<th>EE-305</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the subject as per C-05</td>
<td>Electronics-I & Electronics-II</td>
<td>Name of the subject as per C-09</td>
<td>Electronics</td>
</tr>
<tr>
<td>No. of periods allotted as per C-05</td>
<td>75 + 60</td>
<td>No. of periods allotted as per C-09</td>
<td>90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sno</th>
<th>Name of the Chapter</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Passive Components</td>
<td>10</td>
<td>Deleted</td>
<td>-10</td>
<td>0</td>
<td>1. topics are covered in different chapts of EE-105</td>
</tr>
<tr>
<td>2</td>
<td>Semiconductor devices</td>
<td>15</td>
<td>Deleted</td>
<td>-15</td>
<td>0</td>
<td>Transferred to EE-105</td>
</tr>
<tr>
<td>3</td>
<td>Power supplies</td>
<td>10</td>
<td>added IC voltage regulator</td>
<td>+5</td>
<td>15</td>
<td>1. Topic is necessary</td>
</tr>
<tr>
<td>4</td>
<td>Special devices</td>
<td>20</td>
<td>1. deleted SCR 2. added JFET, MOSFET, LCD</td>
<td>-5</td>
<td>15</td>
<td>1. topic covered in power electronics 2. necessary 3. topic can be covered in 15 periods</td>
</tr>
<tr>
<td>5</td>
<td>Introduction to Amplifiers</td>
<td>10</td>
<td>Changed as transistor biasing</td>
<td>0</td>
<td>10</td>
<td>Biasing techniques are given importance</td>
</tr>
<tr>
<td>6</td>
<td>Small signal amplifiers</td>
<td>10</td>
<td>Combined and named as Amplifiers 1. added direct coupled amplifiers 2. deleted RF Voltage, Class-B, Single tuned, double tuned and staggered tuned amplifiers, emitter follower applications Degenerative and regenerative feedback</td>
<td>+3</td>
<td>30</td>
<td>due to restructuring of syllabus 1. necessary 2. due to restructuring of syllabus</td>
</tr>
<tr>
<td>7</td>
<td>Amplifiers</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course</td>
<td>Change</td>
<td>Δ</td>
<td>10</td>
<td>0</td>
<td>Notes</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------------</td>
<td>--------</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>Oscillators</td>
<td>No change</td>
<td>0</td>
<td>10</td>
<td>-10</td>
<td>No change</td>
</tr>
<tr>
<td>9</td>
<td>Modulation and demodulation</td>
<td>Deleted</td>
<td>-10</td>
<td>0</td>
<td>due to restructuring of syllabus</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Electronic instruments and industrial applications</td>
<td>1. Deleted Ramp type digital voltmeter, digital frequency meter, multi meter</td>
<td>-3</td>
<td>10</td>
<td>Covered in EE-304</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Introduction to ICs and UPS</td>
<td>Deleted</td>
<td>-10</td>
<td>0</td>
<td>due to restructuring of syllabus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>135</td>
<td>-45</td>
<td>90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TIME SCHEDULE

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Major Topics</th>
<th>Periods</th>
<th>Weightage of Marks</th>
<th>Short Questions</th>
<th>Essay Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Power supplies</td>
<td>15</td>
<td>17½</td>
<td>02½</td>
<td>01</td>
</tr>
<tr>
<td>2.</td>
<td>Special devices</td>
<td>15</td>
<td>17½</td>
<td>02½</td>
<td>01</td>
</tr>
<tr>
<td>3.</td>
<td>Transistor Biasing</td>
<td>10</td>
<td>13</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>4.</td>
<td>Amplifiers</td>
<td>30</td>
<td>36</td>
<td>02</td>
<td>03</td>
</tr>
<tr>
<td>5.</td>
<td>Oscillators</td>
<td>10</td>
<td>13</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>6.</td>
<td>CRO and Industrial Timers</td>
<td>10</td>
<td>13</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>90</td>
<td>110</td>
<td>10</td>
<td>08</td>
</tr>
</tbody>
</table>

OBJECTIVES

On the completion of the course the student should be able to comprehend the following

1.0 **Understand the working Principle of Power supply circuits**

1.1 Explain the principle of rectifier Power Supply with a Block diagram

1.2 Explain the working principle of half wave rectifier using P.N. junction diodes with waveforms.

1.3 Explain the working principle of full wave rectifier with centre tapped transformer using P.N. junction diodes with waveforms.

1.4 Explain the working principle of bridge rectifier using P.N. junction diodes with waveforms.

1.5 State the need for filter and List the different types of filters.

1.6 Explain the working principle of half wave rectifier using filter circuits

1.7 Explain the working principle of full wave rectifier with centre tapped transformer using filter circuits.

1.8 Explain the working principle of bridge rectifier using filter circuits

1.9 Explain the operation of Zener diode voltage regulator.

1.10 Explain the operation of adjustable voltage regulator (LM317).

2.0 **Understand the Performance of Special Devices**

2.1 Explain the construction, working principle and applications of JFET

2.2 Explain the construction, working principle and applications of MOSFETS

2.3 Explain the construction, working principle and applications of UJT

2.4 Explain the construction, working principle and applications of LED

2.5 Explain the construction, working principle and applications of LCD

2.6 Explain the construction, working principle and applications of Photo Diode

2.7 Explain the construction, working principle and applications of Photo Transistor

2.8 Explain the construction, working principle and applications of Solar Cell

2.9 Explain the construction, working principle and applications of Opto Coupler
3.0 **Understand the Transistor Biasing.**
3.1 Explain the operation of transistor as an amplifier.
3.2 Explain the concept of DC load line.
3.3 Determine the Q point (operating point) on the DC load line.

3.4 State the necessity of proper biasing for a transistor amplifier.
3.5 List the causes for instability of biasing in a transistor amplifier.
3.6 Explain the need for stabilization and define the stability factor
3.7 Explain collector to base biasing method.
3.8 Explain potential divider biasing method.

4.0 **Understand the Working Principle of Amplifiers.**
4.1 Classify amplifiers on the basis of frequency, function, type of load, period of
Conduction and Number of stages.
4.2 Draw the practical transistor CE amplifier and explain the function of each component
(such as $C_{in}, C_C, C_b, R_1, R_2$ and R_o)
4.3 Need for Multistage amplifier (Cascading of amplifiers).
4.4 Define the terms gain, decibel gain, frequency response and bandwidth of an amplifier.
4.5 Explain the principle of operation of two-stage RC coupled amplifier with circuit
diagram.
4.6 Draw and explain the frequency response of RC coupled amplifier.
4.7 Explain the principle of operation of two-stage transformer coupled amplifier with circuit
diagram.
4.8 Draw and explain the frequency response of transformer-coupled amplifier.
4.9 Explain the principle of operation of direct coupled amplifier with circuit diagram.
4.10 Compare different types of coupling.
4.11 List applications of RC coupled, Transformer coupled and direct coupled amplifiers.
4.12 Distinguish between voltage and power amplifier
4.13 Explain the working principle of Class-A power amplifier
4.14 Explain the working principle of complementary push-pull power amplifier.
4.15 Define efficiency of power amplifier.
4.16 Explain the effect of feed back on gain, band width, distortion, noise.
4.17 Define feed back factor and draw the Circuit Diagrams of different types of feed
back amplifiers
4.18 Draw the circuit and explain the operation of Differential Amplifier.
4.19 List the characteristics of an Ideal Operational Amplifier.
4.20 Explain the Operational Amplifier as summer, integrator, differentiator, scale changer
and inverter.

5.0 **Understand the principles of Oscillators.**
5.1 Establish the conditions for sustained oscillations using Barkausans criteria.
5.2 Classify different types of oscillators
5.3 Explain the working principle of RC phase shift Oscillator
5.4 Explain the working principle of Tuned Collector Oscillator
5.5 Explain the working principle of Hartley Oscillator
5.6 Explain the working principle of Colpitts Oscillator
5.7 Explain the working principle of Crystal Oscillator
5.8 Explain UJT relaxation oscillator
5.9 Mention the different applications of oscillators
6.0 Cathode Ray Oscilloscope and Industrial Timers
6.1 Explain the block diagram of a simple CRO
6.2 Sketch the CRT and indicate different parts.
6.3 Describe the functions of different parts of C.R.T.
6.4 List the applications of C.R.O.
6.5 Explain the Principle of Dual Trace CRO
6.6 Explain the working principle of function generator
6.7 State the need for an industrial timer.
6.8 Draw and explain the internal block diagram of IC 555
6.9 Draw the circuit of simple timer using IC 555

COURSE CONTENTS

1. Power supplies
 Half wave, Full wave and Bridge rectifiers - Types of Filters - Zener Voltage
 Regulator- IC Voltage Regulator,

2. Special Devices
 JFET, MOSFET, UJT, LED, LCD, Photo diode, Photo transistor, Solar cell, Opto
 coupler, - characteristics and their applications.

3. Transistor Biasing
 Transistor as an Amplifier - Biasing and stabilization technique-Operating point and
 Load line Characteristics.

4. Amplifiers
 Classification of Amplifiers, Coupling methods, Frequency Response of R.C coupled,
 transformer coupled and Direct coupled Amplifiers and their applications.
 Power amplifier- Class A - Complementary push-pull Amplifiers- Feed back amplifier -
 Differential amplifier - Operational amplifier - specifications –applications as summer,
 integrator, differentiator, scale changer and inverter.

5. Oscillators
 Principle of oscillator –operation of RC phase shift, Tuned Collector,Hartley, Colpitts,
 Crystal and Relaxation oscillators- Applications.

6. Cathode ray oscilloscope and Industrial Timers
 Block diagram of simple CRO- Study of different stages - Constructional features of
 cathode ray tube - Application of CRO –Dual trace CRO - Function generator- Timer
 555.

Reference Books

1. Principles of Electronics by V.K. Mehta, S CHAND
2. Basic Electronics and Linear circuits by Bhargava,TMH Publishers.
3. Electronic Principle by Malvinro
4. Electronic devices and circuits by Mathur,Chada & Kulakshetra
5. Industrial Electronics by G.K. Mithal
6. Applied electronics by G.K.Mithal5. Electronic Instruments by David Kooper
Subjectwisemodificationtableforrestructuringofthesyllabus.

Branch…ELECTRICAL & ELECTRONICS ENGG.,

<table>
<thead>
<tr>
<th>Sub-Code as per C-05</th>
<th>EE – 406 & EE - 507</th>
<th>Sub-Code as per C-09</th>
<th>EE - 306</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the subject as per C-05</td>
<td>Electrical Lab - I & II</td>
<td>Name of the subject as per C-09</td>
<td>D.C. Machines Lab</td>
</tr>
<tr>
<td>No. of periods allotted as per C-05</td>
<td>51</td>
<td>No. of periods allotted as per C-09</td>
<td>3/Week -- Total : 45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S1 no</th>
<th>Name of the Chapter</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Experiments No’s :1&2</td>
<td>03</td>
<td>Restructured from EE- 507</td>
<td>03</td>
<td></td>
<td>Shifted from EE-507 to relevant laboratory.</td>
</tr>
<tr>
<td>2</td>
<td>Experiment No:03</td>
<td>03</td>
<td>Restructured from EE- 507</td>
<td>03</td>
<td></td>
<td>Shifted from EE-507 to relevant lab.</td>
</tr>
<tr>
<td>3</td>
<td>Experiment No’s: 4 to 12</td>
<td>45</td>
<td>Restructured from EE-406</td>
<td>-15</td>
<td>30</td>
<td>Shifted from EE- 406 to relevant lab due to restructuring.</td>
</tr>
<tr>
<td>4</td>
<td>Experiment No:13 (SWINBURNE’S TEST)</td>
<td>45</td>
<td>Added as per the need</td>
<td>+03</td>
<td>03</td>
<td>It is needed as per the syllabus due to restructuring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+6</td>
<td>06</td>
<td>Repetition classwork</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>51</td>
<td></td>
<td>-6</td>
<td>36 + 09= 45</td>
<td></td>
</tr>
</tbody>
</table>
D.C.MACHINESLAB

Subject Title : D.C. Machines Lab
Subject Code : EE- 306
Periods/week : 03
Periods/Semester : 45

OBJECTIVES

On completion of the practical course the student should be able to

1.0 Identifying the D.C. Machine terminals with the use of electrical gadgets.
2.0 Rules to draw the circuit diagram for the given experiment.
3.0 Select the correct type and range of instruments for different tests.
4.0 List the sequence of operation of the experimental work.
5.0 Rules for start and control emf and speed of DC machines (generator & motor).
6.0 Testing of D.C. Motors(Shunt, Series and Compound Motors)
7.0 Represent the experimental data in tabular and graphical form.
8.0 Use the principles and concepts to analyse the experimental tests and its performance results.
9.0 Practice safety precautions while operating electrical machines.
LISTOFEXPERIMENTS

1. Identify the terminals of the following D.C. Machines.

2. Identify the terminals of a D.C. Compound motor.

3. Study the parts of D.C. 3-Point Starter, 4-Point Starter and Drum controlled Starter.

4. Obtain O.C.C of a DC Shunt Generator at different speeds.

5. Obtain Internal & external characteristics of D.C. Shunt Generator

6. Obtain Internal & external characteristics of D.C. Series Generator

7. Obtain Internal & external characteristics of D.C. Compound Generator

9. Obtain performance characteristics by conducting brake test on DC shunt motor

10. Obtain performance characteristics by conducting load test on DC series motor

11. Obtain performance characteristics by conducting load test on DC compound motor

12. Speed control of DC shunt motor by
 a) Rheostatic control b). Field control

Subject wise modification table for restructuring of the syllabus.

Branch...ELECTRICAL & ELECTRONICS ENGG.,

<table>
<thead>
<tr>
<th>Sub-Code as per C-05</th>
<th>EE – 307</th>
<th>Sub-Code as per C-09</th>
<th>EE - 307</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the subject as per C-05</td>
<td>Measurements Laboratory</td>
<td>Name of the subject as per C-09</td>
<td>Electrical Measurement Laboratory</td>
</tr>
<tr>
<td>No. of periods allotted as per C-05</td>
<td>6 / Week -- Total : 90</td>
<td>No. of periods allotted as per C-09</td>
<td>3 / Week -- Total : 45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sl no</th>
<th>Name of the Chapter</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Experiment No: 01</td>
<td>12</td>
<td>Only related meters kept</td>
<td>-06</td>
<td>06</td>
<td>Excess time given in C-05 and is restructured.</td>
</tr>
<tr>
<td>2</td>
<td>Experiment No’s: 02 &03</td>
<td>12</td>
<td></td>
<td>-06</td>
<td>06</td>
<td>Excess time given in C-05 and restructured.</td>
</tr>
<tr>
<td>3</td>
<td>Experiment No : 04</td>
<td>06</td>
<td></td>
<td>-03</td>
<td>03</td>
<td>Either for AC or DC only can be done depending on the availability at the laboratory</td>
</tr>
<tr>
<td>4</td>
<td>Experiment No’s: 06</td>
<td>06</td>
<td>No change</td>
<td>------</td>
<td>06</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>5</td>
<td>Experiment No’s: 05 to 10</td>
<td>36</td>
<td></td>
<td>-18</td>
<td>18</td>
<td>Excess time given in C-05 is reduced</td>
</tr>
<tr>
<td>6</td>
<td>Experiment No : 11</td>
<td>12</td>
<td></td>
<td>-12</td>
<td>---</td>
<td>Shifted to Electrical Laboratory-II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOTAL</th>
<th>84+6 =90</th>
<th>45</th>
<th>39+06 =45</th>
<th>6 hours for repetition of lab experiments</th>
</tr>
</thead>
</table>

0n the completion of the course the student will be able to do:

1. Familiarization of measuring Instruments.
4. Calibration of dynamometer type wattmeter by direct loading test.
5. Measurement of Power in R-L Circuit by
10. Measurement of Idle and Energy component in Single phase circuit using CT’s & PT’s
11. Verification of Superposition Theorem
12. Verification of Thevenin’s Theorem

Name of the Experiments:

2. Measure the Low and Medium resistance by volt-ampere method.
4. Calibrate the given dynamometer type wattmeter by direct loading test.
5. Measure the Power in R-L Circuit by
6. Calibrate the given Single Phase Energy meter by direct loading test.
8. Measure the three-phase power and power factor by 2-Wattmeter method.
9. Measure Inductance and power factor of an Inductive coil.
10. Measurement of Idle and Energy component in Single phase circuit using CT’s & PT’s
11. Verification of Superposition Theorem
12. Verification of Thevenin’s Theorem
Subjectwise modification table for restructuring of the syllabus.

Branch... ELECTRICAL & ELECTRONICS ENGG.

<table>
<thead>
<tr>
<th>Sub-Code as per C-05</th>
<th>EE-308</th>
<th>Sub-Code as per C-09</th>
<th>EE-308</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the subject as per C-05</td>
<td>Electrical wiring practice laboratory</td>
<td>Name of the subject as per C-09</td>
<td>Electrical wiring Laboratory</td>
</tr>
<tr>
<td>No. of periods allotted as per C-05</td>
<td>45</td>
<td>No. of periods allotted as per C-09</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S No</th>
<th>Name of the Chapter</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cable Jointing</td>
<td>Expt No. 1, 2 and 3 deleted</td>
<td></td>
<td></td>
<td></td>
<td>Shifted to first year</td>
</tr>
<tr>
<td>2</td>
<td>Simple lamp circuits</td>
<td>Expt No. 4, 5, 6 and 7 deleted and Electric bell expt added</td>
<td></td>
<td></td>
<td></td>
<td>Shifted to first year As Electric bell is essential in wiring</td>
</tr>
<tr>
<td>3</td>
<td>Special lamp connections</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td>-----</td>
</tr>
<tr>
<td>4</td>
<td>Motor connections</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td>-----</td>
</tr>
<tr>
<td>5</td>
<td>Power wiring Expt No. 11, 12, 13, 14 and 15 added</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>As these are essentials in modern electrical wiring</td>
</tr>
<tr>
<td>TOTAL</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table shows the proposed changes in the syllabus for the Electrical & Electronics Engineering course, with specific modifications for each topic and their justification.
COURSE CONTENTS

The following exercises are to be practiced (C.T Wiring system, Metal, & PVC system)

I. Simple lamp circuits
 1. Two lamps controlled by two, two- way switches in series parallel connection
 2. Godown wiring scheme
 3. Lamp circuit through 3 phase ceiling rose, incorporate Main switch energy meter and fuse cut out
 4. Having two lamps connected in such a way that each lamp may be turned `on’ and `off’ by operating a single switch
 5. Make lamp circuit using intermediate switch
 6. Control the Electric bell from three locations with lamp indicators.

II. Special Lamp connections:
 7. Draw wiring diagram of connection and practice the wiring for mercury vapour lamp
 8. Draw wiring diagram of connection and practice the wiring for fluorescent lamp

III. Motor connections.
 9. Draw wiring diagram and prepare switch Board with DOL starter, Main Switch, pilot lamps for 3 phase motor.
 10. Draw wiring diagram and prepare switch board with star delta starter, Main switch, pilot lamps for 3 phase motor.

IV. Power wiring
 11. Wire up 1.5 ton capacity window type A/C equipment wiring system as per layout and test it.
 12. Connect the inverter to back up the power supply.
 13. Connect and test the given public address system.
 14. Install a main switch board with a miniature circuit breaker to install a Computer in house wiring system.
 15. Wiring for serial bulb connection.
Subjectwise modification table for restructuring of the syllabus.

Branch… ELECTRICAL & ELECTRONICS ENGG.,

<table>
<thead>
<tr>
<th>Sub-Code as per C-05</th>
<th>EE-407</th>
<th>Sub-Code as per C-09</th>
<th>EE-309</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the subject as per C-05</td>
<td>Electronics laboratory</td>
<td>Name of the subject as per C-09</td>
<td>Electronics laboratory</td>
</tr>
<tr>
<td>No. of periods allotted as per C-05</td>
<td>90</td>
<td>No. of periods allotted as per C-09</td>
<td>90</td>
</tr>
<tr>
<td>Sn No</td>
<td>Name of the Experiment</td>
<td>Topics proposed for Addition / deletion</td>
<td>Justification for Addition / Deletion</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------</td>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>Measure the value of Resistor, Added Capacitors, Inductors, Transformers</td>
<td>Made as study experiment</td>
<td>Study of components is sufficient</td>
</tr>
<tr>
<td>2</td>
<td>Identification of terminals of diodes and Transistors</td>
<td>Made as study experiment</td>
<td>Study of components is sufficient</td>
</tr>
<tr>
<td>3</td>
<td>Static characteristics of Semiconductor diode and Zener diode</td>
<td>Split in to two separated Experiments</td>
<td>Separate experiments required</td>
</tr>
<tr>
<td>4</td>
<td>Characteristics of Transistor in CB, CE configurations</td>
<td>Split into two separate Experiments</td>
<td>Separate experiments required</td>
</tr>
<tr>
<td>5</td>
<td>Half wave and Full wave rectifiers</td>
<td>Split into two separate Experiments</td>
<td>Separate experiments required</td>
</tr>
<tr>
<td>6</td>
<td>Characteristics of FET</td>
<td>No change</td>
<td>No change</td>
</tr>
<tr>
<td>7</td>
<td>Characteristics of SCR</td>
<td>Deleted</td>
<td>Covered in Power Electronics Lab</td>
</tr>
<tr>
<td>8</td>
<td>Characteristics of FET</td>
<td>No change</td>
<td>No change</td>
</tr>
<tr>
<td>9</td>
<td>Frequency response characteristics of RC coupled, Transformer coupled , negative feedback amplifiers</td>
<td>Deleted Transformer coupled , negative feedback amplifiers</td>
<td>due to restructuring of syllabus</td>
</tr>
<tr>
<td>10</td>
<td>Power Amplifiers Class A, complementary Push pull</td>
<td>Deleted complementary push pull</td>
<td>due to restructuring of syllabus</td>
</tr>
<tr>
<td></td>
<td>Oscillators: tuned collector oscillator, hardly oscillator, RC phase shift oscillator</td>
<td>Deleted Tuned collector oscillator</td>
<td>due to restructuring of syllabus</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-----------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>11</td>
<td>CRO</td>
<td>Deleted measuring Depth of modulation</td>
<td>due to restructuring of syllabus, deleted from the theory topics</td>
</tr>
<tr>
<td>12</td>
<td>Timers using IC 555</td>
<td>No Change</td>
<td>No change</td>
</tr>
<tr>
<td>13</td>
<td>Differential amplifier</td>
<td>Deleted</td>
<td>due to restructuring of syllabus</td>
</tr>
<tr>
<td>14</td>
<td>TOTAL</td>
<td>90</td>
<td>90</td>
</tr>
</tbody>
</table>
OBJECTIVES
On completion of the course the student should be able to

1. Perform tests on semi-conductors devices
2. Perform suitable tests on amplifiers and oscillators and obtain the performance characteristics
3. Use of CRO
4. Use timer circuit

LIST OF EXPERIMENTS

i) Study different types of Resistors, Capacitors, with the colour code values, Inductors and Transformers,
ii) Identify the terminals and testing of different Diodes and Transistors

1. Draw the static characteristics of a Semi-conductor diode
2. Draw the static characteristics of a Zener diode
3. Obtain regulation characteristics of a Half wave rectifier using semi-conductor diodes with and without filter circuits
4. Obtain regulation characteristics of a Full wave rectifier (either Centre taped or Bridge type) using semi-conductor diodes with and without filter circuits
5. Draw the input and output characteristics of a transistor in Common Base Configuration.
6. Draw the input and output characteristics of a transistor in Common Emitter Configurations
7. Draw the drain characteristics of FET
8. Plot the volt ampere characteristics of UJT
9. Conduct experiment to obtain frequency response characteristics of Transistorised RC coupled amplifier
10. Determine the optimum load to be used in : Class A power amplifier
11. Perform experiments to determine the frequency range of RC phase shift oscillator
12. Perform experiments to determine the frequency range of Hartley oscillator
13. Measure voltage(DC & AC), frequency, phase using CRO
14. Assemble and test DC operated timer circuit using, IC 555
<table>
<thead>
<tr>
<th>Sno</th>
<th>Name of the Sub Topic</th>
<th>No. of periods As per C-05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C-09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
</table>
| 1 | Unit I
Listening Activity; *Listening for information
Speaking Activity; *Greeting & leave taking | --- | --- | --- | 9 | Is need based |
| 2 | Unit II
Listening Activity; *Listening for details
*Listening for drawing inferences; Speaking Activity
*Making complaints – Formal and Informal | ---- | --- | --- | 9 | Is need based |
| 3 | Unit III
Listening for details
Speaking activity: making suggestions | -- | -- | -- | 9 | Is need based |
| 4 | Unit IV
Listening Activity; Looking for Specific information
Speaking Activity; *Stating opinions | -- | -- | -- | 9 | Is need based |
| 5 | Unit V
Listening Activity; *Preparing CV
Speaking Activity; *Introducing oneself; *Facing Viva-Voce | -- | -- | -- | 9 | Is need based |
| | TOTAL | | | 45 | | |
Introduction:
The course will cater to the need of improving communicative competence. The course would give the students practice in listening and speaking.

<table>
<thead>
<tr>
<th>Unit No</th>
<th>Major Topics</th>
<th>No. of Periods</th>
<th>Weightage of Marks **</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unit I
Listening Activity;
*Listening for information
Speaking Activity;
*Greeting & leave taking</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Unit II
Listening Activity;
*Listening for details
*Listening for drawing inferences; Speaking Activity
*Making complaints – Formal and Informal</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Unit III
Listening for details
Speaking activity: making suggestions</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Unit IV
Listening Activity ;
Looking for Specific information
Speaking Activity ;
*Stating opinions</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Unit V
Listening Activity ;
*Preparing CV
Speaking Activity ;
*Introducing oneself
*Facing Viva-Voce</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>45</td>
<td>50</td>
</tr>
</tbody>
</table>
Weightage of Marks: Tasks to test listening skills
Tasks to test speaking skills through role plays describing processes, objects etc. and group discussions

Objectives:
On completion of the course the student should be able to

- Improve their listening skills
- Improve their speaking skills

Course Contents:
Activities that improve situational interaction
Activities that improve cooperative learning and soft skills.

Course Material:
The Communications Skills laboratory Manual presently in use may be continued by choosing the first five Units. The manual is supported by CD for audio output.

Scheme of Examination:

<table>
<thead>
<tr>
<th>Name of Subject</th>
<th>Instruction periods per week</th>
<th>Total periods per Semester</th>
<th>Scheme of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Duration</td>
</tr>
<tr>
<td>Eng Com Skills Level I</td>
<td>3</td>
<td>45</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>
IV SEMESTER
Subjectwisemodificationtableforrestructuringofthesyllabus.

Branch…ELECTRICAL & ELECTRONICS ENGG.,

<table>
<thead>
<tr>
<th>Sub-Code as per C-05</th>
<th>EE-403</th>
<th>Sub-Code as per C-09</th>
<th>EE -401</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the subject as per C-05</td>
<td>A.C.Machines-I</td>
<td>Name of the subject as per C-09</td>
<td>A.C.Machines-I</td>
</tr>
<tr>
<td>No. of periods allotted as per C-05</td>
<td>75</td>
<td>No. of periods allotted as per C-09</td>
<td>75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S No</th>
<th>Name of the Chapter</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Single phase transformers</td>
<td>35</td>
<td>1.9 added (Ideal transformer) 1.23 partly deleted (polarity test)</td>
<td>- 5</td>
<td>30</td>
<td>Excess periods allotted</td>
</tr>
<tr>
<td>2</td>
<td>Three phase transformers</td>
<td>10</td>
<td>2.8,2.9 and 2.10 added (Instrument transformers) and 2.14 deleted (Buchholz’s relay)</td>
<td>+ 5</td>
<td>15</td>
<td>2.8,2.9 and 2.10 is shifted from MIS Also 2.14 shifted to protection</td>
</tr>
<tr>
<td>3</td>
<td>Alternators</td>
<td>20</td>
<td>3.19 deleted (importance of synchronous impedance)</td>
<td>Nil</td>
<td>20</td>
<td>It is at higher level</td>
</tr>
<tr>
<td>4</td>
<td>Parallel operation of alternators</td>
<td>10</td>
<td>4.6 deleted(excitation inputs)</td>
<td>Nil</td>
<td>10</td>
<td>It is at higher level</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
<td>-</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Subject Title : A.C. MACHINES - I
Subject code : EE-401
Periods/Week : 05
Periods/semester : 75

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Major Topics</th>
<th>Periods</th>
<th>Weightage</th>
<th>Short Questions</th>
<th>Essay Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Single phase Transforms</td>
<td>30</td>
<td>49</td>
<td>03</td>
<td>04</td>
</tr>
<tr>
<td>2.</td>
<td>Three phase Transforms</td>
<td>15</td>
<td>19</td>
<td>03</td>
<td>01</td>
</tr>
<tr>
<td>3.</td>
<td>Alternators</td>
<td>20</td>
<td>29</td>
<td>03</td>
<td>02</td>
</tr>
<tr>
<td>4.</td>
<td>Parallel Operation of Alternators</td>
<td>10</td>
<td>13</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>75</td>
<td>110</td>
<td>10</td>
<td>08</td>
</tr>
</tbody>
</table>

OBJECTIVES
On the completion of the course the student should be able to comprehend the following

1.0 Understand the working of single phase transformer
 1.1 Define the word 'Transformer'.
 1.2 Explain the working of single-phase transformer
 1.3 Classify the transformers based on number of phases, construction and function.
 1.4 Explain the constructional details of transformers
 1.5 State the purpose of each part with sketch
 1.6 Distinguish between shell type and core type transformers
 1.7 Derive the E.M.F equation of a single power transformer
 1.8 Define 'transformation' ratio.
 1.9 Explain ideal transformer with vector diagram
 1.10 Draw Vector diagram for a transformer working on no load.
 1.11 Calculate the core loss
 1.12 Explain the procedure for finding R₀ and X₀ from no load test
 1.13 Develop the vector diagram for a transformer on load for
 (a) Unity power factor
 (b) Lagging power factor
 (c) Leading power factor
 1.14 State the effects of leakage reactance of primary and secondary windings
 1.15 Draw the equivalent circuit of a transformer by approximation
 1.16 Determine the equivalent circuit constants from no-load test and short circuit test
 1.17 Derive the approximate voltage drop equation of a regulation for transformer
 1.18 Calculate regulation for
 (i) Unity power factor
 (ii) Lagging power factor
 (iii) Leading power factor
 1.19 State the losses taking place in a transformer
1.20 State the condition for maximum efficiency
1.21 Solve simple numerical problems
1.22 Calculate the All day efficiency for given load cycle.
1.23 Differentiate between distribution transformer and power transformer
1.24 Explain the sumner’s test
1.25 State the need for parallel operation of transformer
1.26 Mention the conditions for paralleling and load sharing
1.27 Simple Problems on equal voltage ratio.

2.0 To Understand Three Phase Transformers

2.1 State the advantages of 3 phase transformer over single phase transformer
2.2 Types of three phase transformer connections and applications of star-star, delta-star, star-delta, delta-delta and open delta connected transformer
2.3 State the conditions for parallel operation of 3 phase transformer
2.4 List the special transformers
2.5 Explain auto transformer and relation for saving of copper (no derivation)
2.6 State the advantages and disadvantages of autotransformers (and it’s applications)
2.7 Describe the salient features of the welding transformers and current regulation in it
2.8 Explain the necessity of instrument transformers briefly (C.T. and P.T.)
2.9 List the precautions in using C.T. s
2.10 Explain the method of extending range of wattmeter in conjunction with instrument Transformers
 (a) Single phase circuits
 (b) Three phase circuits
2.11 Explain the ‘Scott connection’ with phasor diagram
2.12 State the necessity of cooling of power transformers
2.13 Explain the methods of cooling
2.14 List the specifications of oil cooling and maintenance schedule
2.15 Explain the ‘on load’ and ‘off load’ tap changing
2.16 State the location and function of Breather, Explosion vent, Conservator, Oil level Indicator
2.17 State the maintenance schedule of transformer
2.18 State the BIS (Bureau of Indian Standards) specifications for cooling system.

3.0 Know the classification, construction, working and testing of alternators
3.1 Describe the Principle, Constructional and working of Alternators.
3.2 Classify the alternators based on rotor construction and explain them.
3.3 State the advantage of Stationary Armature.
3.4 Name the parts along with materials used
3.5 State the effect of Chording and Distribution factor and derive expressions.
3.7 Review on lap and wave windings
3.8 Derive EMF equation of an alternator taking into account distribution factor and pitch
3.9 Factor
3.10 Solve simple problems on E.M.F equation
3.11 State the need for an exciter
3.10 list the various types of exciters (main, pilot and static)
3.11 Explain Armature Reaction of Alternator at different P.F’s.
3.12 State the reasons for voltage variations on Load.
3.13 Define the term synchronous impedance.
3.14 State the effects of synchronous impedance.
3.15 Draw the vector diagram for different power factors.
3.16 Define regulation of an alternator
3.17 Describe O.C. and S.C tests conducted on alternator
3.18 Calculate the regulation by synchronous impedance method

4.0 **Comprehend the procedure for voltage control and synchronisation**
4.1 State the necessity for parallel operation of alternators
4.2 State the conditions for synchronisation
4.3 Explain the procedure of synchronisation using lamps and synchro scope
4.4 Explain the method for adjusting the loads shared by two alternators (or one alternator
With infinite bus bars
4.5 Simple problems on the above

COURSE CONTENTS

1. **Transformers**
 Classifications of transformers, Construction of transformers, Theory of an ideal transformer
 - - emf equation derivation - Ratio of transformation and relation between turn ratio - Voltage
eratio and current ratio, Transformer on no load - No load current components and no load
power factor
Transformer on load - Equivalent circuit of transformer - Equivalent circuit constants by
transformation, Short circuits test , Regulation of transformer - definition and derivation of
approximate equation for regulation based on vector diagram for lagging ,leading, unity
power factor - determination of regulation from S.C. Test data , Losses -core-copper-
determination from O.C. and S.C. tests data, efficiency, condition for maximum efficiency - All
day efficiency definition - Calculation for a given load cycle- problems, - Sumpener’s test -
Efficiency calculation, Parallel operation of single phase transformers - necessity - conditions
for paralleling-load sharing problems with equal voltage ratios
2. Three phase transformer
Descriptor treatment of star-star, delta-delta and delta-star, voltage current and phase relation for the above groups-conditions to be fulfilled for paralleling 3 phase transformer, open delta working of 3 phase transformers, Auto-transformers -copper saving – applications, Welding transformer applications – Instrument transformers and its applications-Scott connection for 3 phase to 2 phase and 2 phase to 3 phase conversion - voltage current relations for balance loading, Necessity of cooling - Methods of cooling - Specifications of oil for cooling - ISI code for cooling systems, Accessories - Functions and location of conservator- oil level indicator, breather, explosion vent, - Tap changing gear - no load and on load tap changing procedure, Maintenance schedule followed in NEC/BIS for transformer maintenance

3. Alternator
Classification of low, medium and high speed alternators - Brief description of parts with sketches and function of each part, construction, Assembly - Exciter and pilot exciter – Stationary armature type construction – Advantages, Concentrated and distributed windings - short pitch and full pitch coils - Effect of chording and distribution factors - EMF equation - Derivation – Problems, Cause for variation of voltage on load - Resistance, leakage reactance - Armature reaction - Synchronous reactance and synchronous impedance concepts - phasor diagram for unity, lagging and leading power factor loads, Regulation - definition - derivation of relation between no load voltage and on load voltage for different power factors - Calculation of regulation by synchronous impedance method, O.C and S.C, tests Data – problems.

4. Parallel operation of alternators
Necessity for parallel Operation - condition to be fulfilled for synchronisation. Synchronisation by lamps and synchroscope- Load sharing – simple problems.

REFERENCE BOOKS
1. Electrical Technology - Vol –II by B.L. Theraja
2. AC machines by M.G Say
3. Electrical machines by P.S. Bhimbra
Subject wise modification table for restructuring of the syllabus.

Branch… ELECTRICAL & ELECTRONICS ENGG.,

<table>
<thead>
<tr>
<th>S1 no</th>
<th>Name of the Chapter</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sources of Energy</td>
<td>08</td>
<td>Deketed: Solar collectors</td>
<td>03(deleted)</td>
<td>05</td>
<td>Not required at the diploma level</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Solar concentrators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Thermal Power Stations</td>
<td>15</td>
<td>Deleted : Condensation and types of condensers</td>
<td>05(deleted)</td>
<td>10</td>
<td>Covered in General mechanical engg</td>
</tr>
<tr>
<td>3</td>
<td>Hydro electric power stations</td>
<td>12</td>
<td>No change</td>
<td>04(Deleted)</td>
<td>08</td>
<td>Can be covered in the prescribed periods</td>
</tr>
<tr>
<td>4</td>
<td>Nuclear &Gas power stations</td>
<td>15</td>
<td>No change</td>
<td>03(Deleted)</td>
<td>12</td>
<td>Can be covered in the prescribed periods</td>
</tr>
<tr>
<td>5</td>
<td>Combined operations &Economics</td>
<td>25</td>
<td>Advanced topics on load dispatching</td>
<td>10(Deleted)</td>
<td>15</td>
<td>Can be covered in the prescribed periods</td>
</tr>
<tr>
<td>6</td>
<td>Switchgear &Reactors</td>
<td>25</td>
<td>B.O.C.B,Knife switches & fuses</td>
<td>10(Deleted)</td>
<td>15</td>
<td>Outdated topics</td>
</tr>
<tr>
<td>7</td>
<td>Protective relays</td>
<td>20</td>
<td>Solid plunger and armature attracted type relays</td>
<td>10(Deleted)</td>
<td>10</td>
<td>Can be covered in prescribe hours</td>
</tr>
<tr>
<td>8</td>
<td>Protection of Alternators &Transformers</td>
<td>15</td>
<td>No change</td>
<td>-----</td>
<td>15</td>
<td>No Change</td>
</tr>
<tr>
<td>TOTAL</td>
<td>75+60</td>
<td>-45</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

POWER SYSTEMS - I

Subject Title : POWER SYSTEM – I
Subject Code : EE – 402
Periods / Week : 06
Periods / Semester : 90

TIME SCHEDULE

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Major Topics</th>
<th>Periods</th>
<th>Weightage of Marks</th>
<th>Short Questions</th>
<th>Essay Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sources of Energy</td>
<td>05</td>
<td>03</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Thermal Power Station</td>
<td>10</td>
<td>13</td>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>3.</td>
<td>Hydro Electric Power Station</td>
<td>08</td>
<td>13</td>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>Nuclear & Gas Power Station</td>
<td>12</td>
<td>18</td>
<td>01</td>
<td>1 1/2</td>
</tr>
<tr>
<td>5.</td>
<td>Combined Operation and Economics</td>
<td>15</td>
<td>21</td>
<td>02</td>
<td>1 1/2</td>
</tr>
<tr>
<td>6.</td>
<td>Switch gears and Reactors</td>
<td>15</td>
<td>13</td>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>7.</td>
<td>Protective Relays</td>
<td>10</td>
<td>13</td>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>8.</td>
<td>Protection of alternators and Transformers</td>
<td>15</td>
<td>16</td>
<td>02</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>90</td>
<td>110</td>
<td>10</td>
<td>08</td>
</tr>
</tbody>
</table>

OBJECTIVES:
On the completion of the course the student should be able to

1.0 Understand the various sources of power generation.

1.1 Know the different sources of energy and classify them into conventional and Non-conventional types.

1.2 State necessity of developing non-conventional methods of power generation.

1.3 Describe the construction and working of
 (i) Solar Power plant
 (ii) Tidal Power plant
 (iii) Wind Power plant
 (iv) Biomass Power plant

1.4 Explain the construction and working principle of flat plate solar type collector

1.5 State the relative merits and limitations of Conventional and Non-Conventional types of sources

1.6 Appreciate the need of energy conservation and its methods.
2.0 Understand working of thermal power station.
2.1 Introduction to thermal power station and general principle of working.
2.2 Explain the requirement and factors for selection of site.
2.3 Draw the detailed line diagram of a condensing type thermal power station and explain the principle of working of each component of thermal power station.
2.4 Comprehend the losses of energy and methods to improve the efficiency.
2.5 Specifically explain the advantages of
 a) Pulverisation and the machine used for it
 b) Cooling towers and their types.
2.6 Comprehend the main controls at i) Boilers, ii) Turbines, iii) Condensers, (iv) Alternators.
2.7 Comprehend the centralized controls and indications at control room.
2.8 Energy auditing of thermal power station.
2.9 Understand causes of pollution and methods to control them.
2.10 Scheme of maintenance of Alternator, Turbines, and Boiler.

3.0 Understand hydroelectric power stations.
3.1 Comprehend the principle of working of Hydro power station.
3.2 Comprehend the requirements of Hydro power station.
3.3 Explain limitations in location and operation – List its merits.
3.4 Explain Hydrograph.
3.5 Derive waterpower equation and define various hydraulic terms used – Solve numerical problems.
3.6 Classify the H.E.P’s based upon head, duty, location and hydraulic considerations.
3.7 Explain with layout diagram working of i) High Head, ii) Medium Head, iii) Low Head Power Stations.
 3.6 Specifically explain the need and working of
 i) Surge Tank, ii) Forebay, iii) Spillgates.
 3.7 Understand the main controls at
 a) Head works, b) Turbine, c) Alternators.
 3.9 Comprehend the over all scheme of maintenance.

4.0 Understand the working of Nuclear & Gas Power Stations.
4.1 Introduction to nuclear energy, fission and fusion reactions.
4.2 Appreciate merits and risks involved in using nuclear energy
4.3 List out the nuclear fuels.
4.4 Give specific examples of fission and fusion reactions with mass-energy balance.
4.5 Explain types of fission reactions and sustained chain reaction.
4.6 Explain use of moderator in nuclear reactors.
4.7 Explain the working of a moderated type nuclear power station with a block diagram.
4.8 Specifically explain the need and working of coolant, reflector, and control rods.
 Mention the materials used for them
4.9 Explain the mechanism of power control by control rods.
4.10 Explain the measures to control radio activity.
4.11 Understand the main controls at the reactor.
4.12 Comprehend the over all scheme of maintenance of nuclear power station.
4.13 Understand the principle of working of gas power station with the help of schematic diagram and mention its merits and demerits
4.14 List main controls for gas turbine.

5.0 Comprehend combined operation and economics of power stations.
5.1 Appreciate increase in use of electrical energy, its production and need for reliability.
5.2 Differentiate between isolated operation and integrated operation of power stations and list the merits of integrated operation.
5.3 Comprehend the process of integrated operation and need for grid at various voltage levels
5.4 Understand the concept of load dispatching and its process.
5.5 List the various charges and expenses in power station and classify them as fixed and running.
5.6 Define the terms load curve, load factor, diversity factor and maximum demand.
5.7 Comprehend the cost of generation and effects of load factor and diversity factor on it.
5.8 Solve numerical problems.
5.9 Explain various types of consumer tariffs and compare them.
5.10 Appreciate the effects of P.F. on electricity charges and mention the methods to improve it. Solve numerical problems on tariff and power factor improvement.

6.0 Understand different types of switchgears and reactors and their working.
6.1 Define switch gear and classify.
6.2 Understand isolators, air break switches, their uses and limitations.
6.3 Explain the phenomenon of arc, arc voltage, arc current and its effects.
6.4 State factors responsible for arc and methods of arc quenching.
6.5 Classify the circuit breakers based upon medium of arc quenching.
6.6 Comprehend principle of M.O.C.B and its working.
6.7 Explain properties of SF₆ gas and principle and working of SF₆ circuit breakers.
6.8 Explain principle and working of A.B.C.B.
6.9 Compare M.O.C.B, SF₆C.B and A.B.C.B.
6.10 Understand current limiting reactors and their necessity.
6.11 Draw the scheme of reactor connections and compare them.
6.12 Types of faults in power sys and their effects
6.13 Understand the importance of short circuit KVA calculations

7.0 Protective Relays.
7.1 State the basic requirements of relays and the important activities in relays.
7.2 Classify the relays based upon duty
i) Principle of Operation ii) Time of operation.
7.3 Describe the construction and working of induction type over current relay.
7.4 Describe the current setting, time setting and application of above relay.
7.5 Describe the working of directional over current induction relay and mention its applications.
7.6 Explain the principle, construction, working and applications of impedance relay.
7.7 Explain distance relay and its uses.
8.0 Protection of Alternator and Transformer
8.1 List the probable faults in Alternator Stator and rotor and mention their bad effects.
8.2 Describe the scheme of protection against excessive heating of stator and rotor. Mention the causes of it.
8.3 Explain the differential protection for alternator stator.
8.4 Explain the earth fault protection for rotor.
8.5 Explain the split phase protection of alternator against inter turn short circuits.
8.6 Explain the need and working of field suppression protection.
8.7 List the possible faults and their types in a transformer – Explain their bad effect.
8.8 List the precautions to be taken for applying differential protection to transformers.
8.9 Explain differential protection of transformer.
8.10 Explain buchholtz relay and its protection scheme for transformer.

COURSE CONTENTS

1. Introduction
 Different sources of energy – Conventional and Non-conventional sources – Methods of generation of energy from different sources of power- Construction and working principle of Flat plate solar collector - construction and working principle of Tidal, Wind and Biomass power plants- Merits and limitations of conventional and Non-conventional sources - Need for energy conservation and their methods.

2. Thermal Power Station
 Thermal Power Station – Principle of working – Factors for selection of site. Block diagram of condensing type thermal power station- Thermal power station – Components and principles of working -Losses of energy and methods to improve the efficiency- pulverization, Cooling towers and their types -Main controls at Boilers, Turbines, Condensers and Alternators - Energy auditing of thermal power station- Causes of pollution and methods to control them - Scheme of overall maintenance.

3. Hydroelectric Power Stations
 Principle of working of hydroelectric power station – limitations in location and operation.
 Hydraulic terms used – Water power equation – Classification of hydroelectric power stations based on head, duty, location and hydraulic considerations- Layout diagram of High Head ii) Medium Head iii) Low Head Power Stations- Working of surge tank, fore bay, spill gates- Main controls of head works, turbines and alternators and scheme of their maintenance.
4. Nuclear and Gas Power Stations
Nuclear energy, fission and fusion reactions – Merits and risks in using nuclear energy.
Nuclear fuels - Fission and fusion reactions with mass-energy balance, Fission reactions and sustained chain reaction – Moderator in nuclear reactors – Working of moderate type nuclear power station with a block diagram- Need and working of coolant, reflector, control rods – Materials used for them- Power control by control rods- measures to control radioactivity- main controls at the reactor- overall maintenance of the nuclear power station- Principle and working of gas power plant, main controls for gas turbine.

5. Combined Operation and economics of Power Stations
Isolated operation and integrated operation of power stations – Their merits and limitations – Load dispatching and its process –Charges/Expenses involved in power station – Their classification as fixed and running-

6. Switch Gear and Reactors.

7. Protective Relays.
Requirements, activities of relays – Classifications based on duty, principle of operation and time of operation – Construction and working of induction type over current relays – Directional Over current relay Principle, construction working of impedance, distance relay.

8. Protection of Alternators and transformers
REFERENCE BOOKS

1. Electrical Power by S.L.Uppal
2. Switch gear and Protection by Sunil S. Rao
3. Generation, Transmission and Utilisation by A.T.Starr
4. Power System by C.L.Wadhwa
5. Non Conventional Energy Guide Lines by NEDCAP
6. Electrical power plants by J B Guptha
Subjectwise modification table for restructuring of the syllabus.

Branch… ELECTRICAL & ELECTRONICS ENGG.,

<table>
<thead>
<tr>
<th>Sub-Code as per C-05</th>
<th>EE-501</th>
<th>Sub-Code as per C-09</th>
<th>EE-403</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the subject as per C-05</td>
<td>Electrical Installation & Estimation</td>
<td>Name of the subject as per C-09</td>
<td>Electrical Installation & Estimation</td>
</tr>
<tr>
<td>No. of periods allotted as per C-05</td>
<td>75</td>
<td>No. of periods allotted as per C-09</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sno</th>
<th>Name of the Experiment</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of period s added / deleted</th>
<th>No. of period s As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wiring Tools, Accessories and Safety procedures</td>
<td>15</td>
<td>Totally Deleted</td>
<td>15(del eted)</td>
<td>----</td>
<td>Introduced in Electrical Workshop EE-111</td>
</tr>
<tr>
<td>2</td>
<td>Estimation of lighting and power loads</td>
<td>20</td>
<td>Simple lamp circuit deleted</td>
<td>----</td>
<td>20</td>
<td>Covered in Electrical workshop in EE-111</td>
</tr>
<tr>
<td>3</td>
<td>Estimation of OH Lines and earthing</td>
<td>15</td>
<td>No change</td>
<td>---</td>
<td>15</td>
<td>--------</td>
</tr>
<tr>
<td>4</td>
<td>Departmental test, REC and Electrical act 2003</td>
<td>15</td>
<td>No change</td>
<td>---</td>
<td>15</td>
<td>--------</td>
</tr>
<tr>
<td>5</td>
<td>Maintenance of electrical machines</td>
<td>10</td>
<td>No change</td>
<td>---</td>
<td>10</td>
<td>--------</td>
</tr>
<tr>
<td>TOTAL</td>
<td>75</td>
<td>-15</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ELECTRICAL INSTALLATION AND ESTIMATION

Subject Title : ELECTRICAL INSTALLATION AND ESTIMATION
Subject code : EE-403
Periods/Week : 04
Periods/Semester : 60

TIME SCHEDULE

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Major Topics</th>
<th>Periods</th>
<th>Weightage of Marks</th>
<th>Short Questions</th>
<th>Essay Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Estimation of Lighting and Power Loads</td>
<td>20</td>
<td>39</td>
<td>03</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Estimation of OH Lines and Earthing</td>
<td>15</td>
<td>34</td>
<td>03</td>
<td>2 1/2</td>
</tr>
<tr>
<td>3.</td>
<td>Departmental Test, REC and Electrical Act 2003,</td>
<td>15</td>
<td>21</td>
<td>02</td>
<td>1 1/2</td>
</tr>
<tr>
<td>4.</td>
<td>Maintenance of Electrical Machines</td>
<td>10</td>
<td>16</td>
<td>02</td>
<td>01</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>60</td>
<td>110</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>

OBJECTIVES

On the completion of the course the student will be able to comprehend the following

1.0 Estimation of Lighting and Power loads
1.1 Explain the construction working of different types of lamps and their connections
 i) Incandescent lamps
 ii) Discharge lamps
 a) Sodium Vapour Lamp
 b) Mercury Vapour Lamp
 c) Neon lamps
 d) Fluorescent lamp
 e) Halogen lamp
1.2 Know about making lamp circuits
draw the circuits for
 1)Series-parallel connection of lamps
 2)Godown wiring scheme
 3)Lamp circuits incorporating main switch, energy meter, fuse cut-out and distribution box
1.3 Explain different types of service mains
1.4 Select the service main suited to the given situation
1.5 State the merits and demerits of different systems of interior wiring.
1.6 Select the type of wiring system suitable to the given situation
1.7 List out the electrical materials used in wiring and service mains.
1.8 List the schedule of rates used in preparing estimate
1.9 Estimate the cost of indoor wiring given the plan of a building.
1.10 Drawing the wiring layout for a big office building
1.11 Draw the wiring layout for a workshop/ Electrical Laboratory
1.12 Draw the wiring layout of a Big industry/Milk dairy/cement Factory/Sugar factory
1.13 Draw wiring layout of a Big Hotel with 4 storey Building.
and with lift arrangement
1.14 Draw the wiring layout of a Residential Building with 2 Bed room house.
1.15 Prepare layout and draw single line wiring diagrams as per standard practise for a
given set of machines in a shop
1.16 Select type of wiring system and lighting requirements
1.17 Calculate the wire sizes for various circuits
1.18 Specify important materials used under given condition
1.19 Calculate the quantities and cost of all materials required for the above.
1.20 Prepare the estimate of the complete installation as per standard practice
1.21 Select the type of wiring and service mains used for the irrigation pump set.
1.22 Specify the material used in the execution of the irrigation pump set installation
1.23 Calculate the quantities and cost of various materials required in a given situation.
1.24 Prepare an estimate for electrifying the irrigation pump set scheme
1.25 Prepare an estimation for submersible pump installation

2.0 Estimation of OH Lines and Earthing
2.1 Calculate the total number of insulators required for the given scheme
2.2 Select the type of insulators to be used
2.3 Select the type size and number of cross arms required for the overhead line
2.4 Determine the size and total length of overhead conductor required for the line giving
due consideration for the sag to be allowed
2.5 Number of stays and Guard insulation ,Number of struts, guarding stairs and foundation
 estimate
2.6 Estimate the quantity of all materials required for given 11 KV and 400 v overhead lines as
 per standard practice followed by NEC
2.7 Estimate the quantity of materials required for a pole and plinth mounted transformer
 substation
2.8 Select supporting poles of suitable size and height to install a given transformer as per
 standard practice in NEC
2.9 Estimate the quantity of materials required for a plinth and pole mounted transformer
 substation
2.10 Estimate the quantity of all the electrical accessories and components required for the given
 a)Pole mounted transformer
 b)Plinth mounted transformer including the operating mechanism as per
 standard practice in NEC
2.11 State the purpose of Earthing and types that are normally used.
2.12 Select the suitable type of Earthing for a given installation
2.13 Specify the different components used in electrical Earthing of a given installation
2.14 List the materials that are to be used in the earth pit surrounding the earth electrode
2.15 Prepare the estimate for pipe and plate Earthing
3.0 Departmental Test, REC and Electrical Act 2003
3.1 Know the departmental procedure for obtaining a service connection
3.2 Specify insulation resistance desirable for a given electrical installation
3.3 Specify the value of earth resistance to be maintained for a given electrical installations
3.4 Know the test procedure for continuity of wiring in an electrical installation
3.5 Know the procedure for conducting insulation test of domestic wiring
3.6 Survey the load particulars in a village
 a) Domestic b) industrial C) agricultural
3.7 Calculate the capacity of a transformer required assuming suitable diversity factor
3.8 Determine the location point of transformer and calculate the tail end voltage regulations
 as per the practice in NEC
3.9 Calculate the quantities of various materials required
3.10 Prepare an estimate for the quantities and cost of material required
3.11 Determine the economic feasibility of the scheme as per the standard norms fixed by
 REC to execute the scheme.
3.12 State major rules applicable to electrical installations as per Electrical act 2003
 and rules
3.13 Follow the Electrical act 2003 and rules regarding procedures to be adopted during
 execution of electrical installations.
 a) Domestic lighting & Power b) Industrial
3.14 State the standards and code of practice followed by NEC in respect of electrical
 installations and OH lines of 11 KV and 400V pole mounted Plinth mounted
 transformers

4.0 Maintenance of Electrical Machines
4.1 State the importance of plant maintenance
4.2 State the different types of plant maintenance
4.3 State the role of maintenance engineer
4.4 Discuss the different industrial hazards
4.5 Describe the causes of industrial electrical accidents and remedies
4.6 Understand the important steps involved in maintenance of power Transformer

COURSE CONTENTS

1. Estimation of Lighting and power loads
Lamps and Lamp circuits : Types of lamps - construction of different types of lamps -
Incandescent lamps - Gas filled incandescent lamps - Discharge lamps - Sodium Vapour
lamps - Mercury vapour lamps - Neon lamps - fluorescent lamps - Halogen lamps - different
lamp circuits - for godown wiring - lamp circuit incorporating energy meter, cut out and
distribution box.
Estimating and costing of domestic lighting installation service main - types of wire -
specification - quantity of materials required for service main - estimation of cost selection
of interior wiring system suitable to a given building - number of circuits - calculation of length of
wire and quantity of accessories required - estimates of cost of materials and Labour for
execution of the domestic wiring instalation as per National Electrical act 2003 .Power wiring
installation Drawing wiring layout for a big office building, electrical laboratory, big
industry/milk dairy/auditors/cement factory/sugar factory, Big hotel with 4 storyed building
with lift arrangement and a residential building with 2 bed room house.- estimation and costing upto 20 kVA calculation of load current based on ratings of various equipment’s to be installed - size of wire - length of wire number of circuits - quantity of accessories, Labour cost for execution of work as per standard practice.

Irrigation pump installation - Estimation and costing upto 10 HP service main - type-calculation of size and quantity of wire and other components required - Labour cost for erection - Type of starter and control panel - accessories quantity and estimation Estimate for the installation of submersible pump.

2. Estimation of OH Lines and Earthing
Distribution lines of 11 kV and 400 v OH lines - estimation only quantity of materials required for lines of length 1 km - of number of poles - Cross arms clamps - insulators - conductor length and size for a given power transmission Distribution transformer erection- Estimation of quantity of materials required for structures, isolators - HG fuse operating mechanism, isolators, lightening arrestors for pole mounted substation and plinth mounted substation Quantity estimation for materials required in electrical Earthing both for pipe earthling and plate Earthing suitable to the given equipment or transformer substation

3. Departmental Tests and REC and Electrical Act 2003
Electrical installation testing - departmental procedure for testing before giving service connection - departmental procedure for obtaining service connection - desirable insulation resistance for domestic and power circuits - Tests for measuring insulation resistance - procedure for conducting insulation resistance test and continuity tests, earth continuity test Design of rural electrification scheme - Load survey-determination of capacity of transformer - estimation of quantity of materials required for the erection of distribution lines and 11 kV feeder from a nearby 11 kV feeder - determining the economic feasibility of the scheme as per the procedure laid out in NEC, - Extracts from Indian Electricity rules 1956 and code of practice by NEC regarding - domestic power, agricultural industrial wiring installations, erection of 11 kV, 400 v distribution lines - pole mounted transformer

4. Maintenance of Electrical Machines
 - defects in Commutator and remedies - under cutting mica - resurfacing of commutator brushes - function and requirement - brush holder - function and different types - staggering pf brushes - brush pressure - growler -importance of plant maintenance - types - preventive maintenance - Break down maintenance - production maintenance - Role of maintenance engineer -.Maintenance of Transformer - Important steps in maintenance of power Transformer - Difference in maintenance schedule for attended Transformers - Over heating of Transformer - causes of troubles and failures of cores of power Transformers - Failure of power transformer due to structural defects – precautions to be taken while using

REFERENCE BOOKS

Electrical Wiring ,Estimating & costing by S.L.Uppal
Electrical wiring, Estimating & costing by J.B.Gupta
Electrical Drawing by Balbir Singh
Electrical wiring by Arora
Maintenance and Operation of Electrical Equipment by BVS Rao Vol…I
Testing, Commissioning Operation & Maintenance of Electrical equipment by S.Rao
Electrical Installation Estimation and Costing by M.Rajalingam.
<table>
<thead>
<tr>
<th>Sno</th>
<th>Name of the Chapter</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basics of Digital Electronics</td>
<td>18</td>
<td>1. Combined and named as Basics of Digital Electronics</td>
<td></td>
<td>-13</td>
<td>1. due to restructuring of syllabus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Deleted codes, K maps, logic families MUX, comparators</td>
<td></td>
<td>20</td>
<td>2. due to restructuring of syllabus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. added need for A/D and D/A converters</td>
<td></td>
<td></td>
<td>3. shifted from chpt 5</td>
</tr>
<tr>
<td>2</td>
<td>Combinational logic circuits</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sequential logic circuits</td>
<td>15</td>
<td>1. deleted modulo counters, up-down counter, universal shift register.</td>
<td>-15</td>
<td>15</td>
<td>1. due to restructuring of syllabus</td>
</tr>
<tr>
<td>4</td>
<td>Registers and memories</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A/D and D/A converters</td>
<td>12</td>
<td>deleted</td>
<td>-12</td>
<td>0</td>
<td>Transferred to chapt 1</td>
</tr>
<tr>
<td>6</td>
<td>Architecture of 8051</td>
<td>10</td>
<td>No change</td>
<td>+5</td>
<td>15</td>
<td>Topic required 15 periods</td>
</tr>
<tr>
<td>7</td>
<td>Instruction set of 8051</td>
<td>20</td>
<td>No change</td>
<td>-5</td>
<td>15</td>
<td>Topics adjusted in 15 periods</td>
</tr>
<tr>
<td>8</td>
<td>Programming concepts</td>
<td>20</td>
<td>1. Specific programs are added</td>
<td>-10</td>
<td>10</td>
<td>due to restructuring of syllabus</td>
</tr>
<tr>
<td></td>
<td>Peripherals ICs</td>
<td>20</td>
<td>Deleted</td>
<td>-20</td>
<td>0</td>
<td>due to restructuring of syllabus</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>----</td>
<td>---------</td>
<td>-----</td>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>10</td>
<td>Applications</td>
<td>20</td>
<td>Deleted</td>
<td>-20</td>
<td>0</td>
<td>due to restructuring of syllabus</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>165</td>
<td></td>
<td>-90</td>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>
DIGITAL ELECTRONICS AND MICRO CONTROLLERS

Subject Title : Digital Electronics and Micro Controllers
Subject Code : EE-404
Periods/We : 05
Periods/Semester : 75

TIMESCHEDULE

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Major topics</th>
<th>No. of periods</th>
<th>Weightage of marks</th>
<th>Short Answer Questions</th>
<th>Essay Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basics of Digital Electronics</td>
<td>20</td>
<td>26</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Flip-flops, Registers, Counters and Memories</td>
<td>15</td>
<td>26</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Architecture of 8051</td>
<td>15</td>
<td>26</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Instruction set of 8051</td>
<td>15</td>
<td>19</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Programming concepts</td>
<td>10</td>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>75</td>
<td>110</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>

OBJECTIVES
On completion of the study of the subject the student should be able to comprehend the following

1.0 Know the basics of Digital Electronics
1.1 Explain Binary, Octal, Hexadecimal and BCD number systems and compare with decimal system.
1.2 Convert one number system to another of the above systems.
1.3 Perform binary addition, subtraction, Multiplication and Division.
1.4 Write 1’s complement and 2’s complement numbers for a given binary number.
1.5 Perform subtraction of binary numbers in 2’s complement method.
1.6 State ASCII Code.
1.7 Explain the importance of parity Bit.
1.8 State different postulates in Boolean algebra.
1.9 Explain AND, OR, NOT Gates with truth tables.
1.10 State De-Morgan’s theorems.
1.11 Explain the working of NAND, NOR gates using truth tables.
1.12 Explain the working of an Exclusive – OR gate with table.
1.13 State the function of the Half-adder.
1.14 Show that two Half-adders and OR–gate constitute a full-adder.
1.15 Explain the working of 4 Bit parallel adder using full-adders.
1.16 Explain the working of a serial adder with a block diagram.
1.17 Draw and explain the operation of 2 X 4 decoder.
1.18 Draw and explain the operation of 4 X 2 encoder.
1.19 State the need for A/D & D/A converters.
1.20 State the need for a tri-state buffer.
2.0 Understand the working of Flip-flops, Registers, Counters and Memories

2.1 List different types of Flip-flops
2.2 Explain the working of RS and RST flip flops with truth tables
2.3 Explain JK flip flop & J-K Master-Slave Flip-flop with the truth tables
2.4 Study the need for preset and clear inputs
2.5 Explain the D flip-flop, T flip-flop with the help of truth tables
2.6 List the different types of Registers
2.7 Explain the concept of Serial in Serial out, Serial in Parallel out, Parallel in Serial out and Parallel in Parallel out with Left shift and Right shift operation of shift register with a block diagram.
2.8 Give an introduction to binary counters
2.9 Differentiate between synchronous and asynchronous counters.
2.10 Explain the working principle of asynchronous 4-bit ripple counter with the help truth table and waveforms.
2.11 Explain the working principle of 4-bit decade counter with the help truth table and waveforms
2.12 Classify the different types of memories
2.13 Differentiate between RAM and ROM
2.14 Explain the working of dynamic memory
2.15 Differentiate between Flash ROM and NV RAM

3.0 Comprehend the Architecture of Micro controller 8051

3.1 Know the features of micro controllers.
3.2 Draw the block diagram of a microcomputer and explain the function of each block.
3.3 Give the pin diagram of 8051 micro controller and specify the purpose of each pin.
3.4 Give the functional block diagram of 8051 microcontroller
3.5 Know the register structure of 8051.
3.6 Explain the function of various special function registers.
3.7 Describe internal memory, external memory and ports of 8051.
3.8 Explain timers & counters in 8051
3.9 Explain serial input/output ports of 8051
3.10 Explain interrupt controls in 8051.

4.0 Know the Instruction set of 8051 Micro controller

4.1 State the need for an instruction set.
4.2 Give the instruction format of 8051.
4.3 Explain fetch cycle, execution cycle and instruction cycle.
4.4 Distinguish between machine language, assembly language, and High level language
4.5 Classify instruction set of 8051 based on function and length.
4.6 Explain the terms operation code, operand of an instruction.
4.7 Know the various addressing modes of 8051.
4.8 Explain data transfer instructions of 8051.
4.9 Explain the arithmetic instructions and recognise the flags that are set or reset for given data conditions.
4.10 Explain the logic instructions and recognize the flags that are set or reset for given data conditions.
4.11 Explain unconditional and conditional Branching operations and how flags are used to change the sequence of program.
4.12 Illustrate the logic operations and explain their use in making, setting and resetting of individual bits.

5.0 **Programming concepts**
5.1 Know the various symbols used in drawing flow charts.
5.2 Draw flow charts for some simple problems.
5.3 Write programs in mnemonics to illustrate the application of data copy instructions and translate these mnemonics into hex codes.
5.4 Write programs to perform single byte and multi byte addition.
5.5 Write a Program to sum up given N numbers
5.6 Write a Program to sum of first N natural numbers
5.7 Write a Program to multiply two 8-bit numbers using MUL instruction
5.8 Write a Program to find biggest data value in given data array
5.9 Write a Program to convert a given Hex number to BCD number

COURSE CONTENTS

1. **Basics of Digital Electronics**

2. **Flip-flops, Counters , Registers and Memories**
 Principle of flip-flop operation, RS, RST, JK, JK Master slave, T, D flip-flops. preset and clear inputs. Shift Registers- Serial in Serial out, Serial in Parallel out, Parallel in Serial out and Parallel in Parallel out with Left shift and Right - Binary counters - 4-bit ripple counter, decade counter. Memories, RAM and ROM, dynamic memory, Flash ROM and NV RAM.

Architecture of Microcontroller 8051
 Block diagram of microcomputer, Block diagram of 8051, Pin out diagram of 8051, register structure, special function registers internal memory, external memory, timer-counter, serial input/output ports, interrupts,

4. **Instruction set of 8051:**
 Instruction set of 8051, instruction format, machine language, assembly language, classification of instructions, addressing modes – opcode, operand Groups of instructions, data transfer instructions arithmetic instructions, logic instructions,
branching operations, Boolean group of instructions.

5. **Programming concepts:**
 Flow charts, Data transfer, single and multi byte addition, sum up given N numbers, multiply two 8-bit numbers, biggest data value in a data array, Hex number to BCD number.

Reference Books
1. Digital Electronics and logic design by B. Somanathan Nair, PHI
2. Digital Computer Electronics by Malvino & Leach., TMH
3. 8051 Micro controller by Mazidi and Mazidi.
5. Programming customizing the 8051 Microcontroller by Myke Predko TMH
6. Modern Digital Electronics By RP JAIN TMH
7. Digital Electronics Tokhem TMH
8. Digital Electronics Puri TMH
9. Digital Computer Fundamentals by Barty
Subjectwise modification table for restructuring of the syllabus.

Branch… ELECTRICAL & ELECTRONICS ENGG.,

<table>
<thead>
<tr>
<th>Sno</th>
<th>Name of the Experiment</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Simple Stresses & Strains</td>
<td>14</td>
<td>No change</td>
<td></td>
<td>14</td>
<td>No change</td>
</tr>
<tr>
<td>2</td>
<td>Geometric properties of sections</td>
<td>12</td>
<td>Totally deleted</td>
<td>-12</td>
<td>-----</td>
<td>due to restructuring of syllabus,</td>
</tr>
<tr>
<td>3</td>
<td>Torsion in Shafts</td>
<td>10</td>
<td>No change</td>
<td></td>
<td>----</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>IC Engines, Boilers, Turbines</td>
<td>36</td>
<td>Gas turbines(addition)</td>
<td></td>
<td>-----</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>Pumps, Bearings and Lubricants</td>
<td>18</td>
<td>-------</td>
<td>-03</td>
<td>15</td>
<td>Can be covered in prescribed periods</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>90</td>
<td></td>
<td></td>
<td>-15</td>
<td>75</td>
</tr>
</tbody>
</table>
GENERAL MECHANICAL ENGG.

Subject title : General Mechanical Engg.
Subject Code : EE-405
Periods/Week : 05
Periods/Semester : 75

TIME SCHEDULE

<table>
<thead>
<tr>
<th>S.No</th>
<th>Major Topics</th>
<th>Number Of Periods</th>
<th>Weightage of Marks</th>
<th>Short questions</th>
<th>Essay questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Simple Stresses & Strains</td>
<td>14</td>
<td>26</td>
<td>02</td>
<td>02</td>
</tr>
<tr>
<td>02</td>
<td>Torsion in Shafts</td>
<td>10</td>
<td>16</td>
<td>02</td>
<td>01</td>
</tr>
<tr>
<td>03</td>
<td>I.C Engines, Boilers, Turbines</td>
<td>36</td>
<td>52</td>
<td>04</td>
<td>04</td>
</tr>
<tr>
<td>04</td>
<td>Pumps, Lubricants</td>
<td>15</td>
<td>16</td>
<td>02</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>75</td>
<td>110</td>
<td>10</td>
<td>08</td>
</tr>
</tbody>
</table>

OBJECTIVES
On completion of the course the student should be able to comprehend the following

1.0 Understand the meaning of stress and strain
1.1 Define the terms : stress and strain
1.2 Identify the different types of stresses and strains
1.3 Define Hooke’s law
1.4 Define moduli of elasticity
1.5 Draw typical stress-strain curve for an M.s. Specimen under tension
1.6 Define factor of safety
1.7 Define poisson’s ratio
1.8 State the relationship between elastic constants.
1.9 Calculate the dimensional changes in the bodies of uniform cross section subjected to tensile and compressive forces

2.0 Appreciate the theory of torsion
2.1 Know the function of shafts.
2.2 Specify the standard sizes
2.3 Write down simple torsion equation
2.4 Design the size of solid shaft
 i) Strength point of view
 ii) stiffness point of view
3.0 *I.C.ENGINES - BOILERS - TURBINES*
3.1 *Know the constructional details of I.C. Engines*
3.2 Define I.C. Engine
3.3 Identify the various parts of
 i) Diesel engine
 ii) Petrol engine
3.4 Explain the principle of 4-stroke diesel/petrol engine
3.5 Explain the principle of 2-stroke diesel/petrol engine
3.6 Distinguish between 4-stroke cycle and 2-stroke cycles
3.7 Distinguish between diesel engine and petrol engine
3.8 State the functions of components such as carburettor, fuel pumps and governor
3.9 Explain the function of a boiler
3.10 Compare fire tube boiler with water tube boiler
3.11 Draw the Sketch of Modern High Pressure boiler
3.12 Explain the working of above boiler
3.13 Identify the necessity of mountings such as
 1) water level indicator
 2) Pressure gauge
 3) Stop valve
 4) Feed check valve
 5) safety valve
 6) Fusible plug
3.14 Identify the accessories such as
 1) Economiser
 2) Super heater
 3) Air pre heater
3.15 Mention the working principle of above with sketches.
3.16 Explain the principle of working of a steam turbine
3.17 Classify the turbine based on action of steam
3.18 Compare impulse turbine with reaction turbine
3.19 Study the De Laval and Parsons turbines
3.20 Explain the working of Gas turbine
3.21 State the types of Gas turbine
3.22 Explain the function of jet and surface condensers.
3.23 Explain the principle of working of a water turbine
3.24 Classify the water turbines
3.25 Illustrate the working principle of
 i) Pelton wheel
 ii) Francis turbine
 iii) Kaplan turbine

4.0 *Understand the working of centrifugal pumps.*
4.1 Explain the principle of operation of centrifugal pump
4.2 Explain the constructional details of centrifugal pump.
4.3 Know the method of improving the delivery head by multistage
4.4 Appreciate the importance of priming of centrifugal pumps.
4.5 Explain the principle of operation of reversible turbine pump and jet pump
4.6 Explain the function of bearing
4.7 Classify the bearings
4.8 Explain with a line sketch the journal and collar bearings
4.9 List and explain anti friction bearing
4.10 know the application of ball and roller bearings
4.11 State the specifications of ball and roller bearings
4.12 State the purpose of lubrication
4.13 State the properties of a lubricant
4.14 List the types of lubricants with examples
4.15 Know the application of lubricants.

COURSE CONTENTS

1. **Simple stress and strains**
 - Definitions, Tensile stress, Compressive stress, Shear stress, Linear strain, lateral strain and, Poisson’s ratio, elastic limit, statement of Hook’s law, stress-strain diagram with salient features for ductile materials under tensile stress. Elastic moduli, Definition and explanation of Young’s modulus, Modulus of rigidity, Bulk modulus, Working stress, Ultimate stress, Factor of safety. Simple problems on tensile and compressive stress and strains in uniform and varying cross section bar (tapering sections omitted), Relationship between Young’s modulus, rigidity modulus and bulk modulus (without proof) problems thereon

2. **Torsion in shafts**
 - Function of shafts, standard shaft sizes, Polar moment of inertia of hallow and solid (no proof) shafts. Torsion equation, and power transmitted, Permissible shear stress.

3. **Constructional details of I.C. Engines.**
 - Four stroke and two stroke petrol and diesel engines. petrol engine for 4 stroke / 2 stroke, diesel engine for 4 stroke / 2 stroke, Comparison between petrol and diesel engine,
 - Functions of carburettor, fuel injection pump, governor, Classification of boilers fire tube-water tube Sketch and description of modern boiler and mention various mountings used. Boiler accessories (sketch, description and functions of) Economiser, Super heater, Feed water heater, Air pre-heater. Gas Turbine, Impulse & Reaction turbines, Pelton wheel, Francis, Kaplan, condensers.

4. **Pumps - Introduction**
 - centrifugal, Single stage, lubricants - examples and their applications
 - Note: 1. This subject is to be taught by mechanical faculty
 - 2. Paper setting and paper evaluation is also to be done by Mechanical Faculty.

REFERENCE BOOKS

1. Strength of materials by Ramamrutham
2. Strength of materials by Zakaraia Baig
3. Strength of materials by Surender Singh
4. Strength of materials by S.B. Junarker
5. General Mechanical Engineering by Lakshminarayana
6. General Mechanical Engineering by Gopala Krishna
7. Hydraulic Machinery by Jagadishalal
8. Strength of Materials by R.S. Kurmi
Subjectwisemodificationtableforrestructuringofthesyllabus.
Branch…ELECTRICAL & ELECTRONICS ENGG.,

<table>
<thead>
<tr>
<th>Sub-Code as per C-05</th>
<th>EE-406</th>
<th>Sub-Code as per C-09</th>
<th>EE-406</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the subject as per C-05</td>
<td>Electrical laboratory -I</td>
<td>Name of the subject as per C-09</td>
<td>A.C.Machines Laboratory –I</td>
</tr>
<tr>
<td>No. of periods allotted as per C-05</td>
<td>90</td>
<td>No. of periods allotted as per C-09</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S No</th>
<th>Name of the Chapter</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D.C.Generators and Motors</td>
<td>Expt No. 1to 8 deleted</td>
<td></td>
<td></td>
<td></td>
<td>Shifted to D.C. Machines lab</td>
</tr>
<tr>
<td>2</td>
<td>Transformers and Alternators</td>
<td>No change</td>
<td></td>
<td></td>
<td></td>
<td>No change</td>
</tr>
<tr>
<td>3</td>
<td>Battery charging</td>
<td>No change</td>
<td></td>
<td></td>
<td></td>
<td>No change</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>90</td>
<td></td>
<td>-45</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>
A.C. MACHINES LABORATORY – I

Subject Title : A.C. MACHINES LABORATORY – I
Subject Code : EE-406
Periods/week : 03
Periods/Semester : 45

OBJECTIVES

On completion of the practical course the student should be able to

1.1 Identify the machines from the name plate details
2.0 Rules to draw the circuit diagram for the given experiment
3.1 Select the correct type and range of instruments for different tests
4.1 List the sequence of operation of the experimental work
5.1 Rules for start and control emf and speed of AC machines
6.0 Select correct voltages and adjust auxiliaries for tests on transformer
7.0 Represent the experimental data in tabular and graphical form
8.0 Use the principles and concepts to analyse the experimental tests and results
9.0 Practice safety precautions while operating electrical machines
10.0 Measure the power in single phase and 3 phase A.C circuits
11.0 Charge batteries
13.0 Testing of Transformer oil
LISTOFEXPERIMENTS
1. Conduct OC & SC tests on 1-phase transformer and find
 a) Equivalent circuit
 b) Regulation and efficiency at various power factors
 c) Load at which max. efficiency occurs

2. Obtain the efficiency & regulation at different loads & p.f.s., by conducting load tests on
 1 – phase transformer

3. Obtain efficiency & Regulation of two similar transformer by conducting, Sumpener’s test

4. Conduct Scott connection on transformers

5. Calculate the regulation of alternator by using synchronous impedance method

6. Synchronise the alternator with supply mains by using
 a) Lamp method
 b) Synchroscope

7. Charge the battery and draw performance curves using
 (a) Constant current method
 (b) Constant voltage method

8. To test the break down voltage of a Transformer oil using oil Testing kit and to test the
 acidity of transformer oil.
C-09 – EE-407

Subjectwisemodificationtableforrestructuringofthesyllabus.

Branch…ELECTRICAL & ELECTRONICS ENGG.,

<table>
<thead>
<tr>
<th>Sub-Code as per C-05</th>
<th>EE – 306 & EE -506</th>
<th>Sub-Code as per C-09</th>
<th>EE - 407</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the subject as per C-05</td>
<td>Electrical Engg Drawing- I & II</td>
<td>Name of the subject as per C-09</td>
<td>Electrical Engg Drawing</td>
</tr>
<tr>
<td>No. of periods allotted as per C-05</td>
<td>90+90</td>
<td>No. of periods allotted as per C-09</td>
<td>6/Week -- Total : 90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S1 no</th>
<th>Name of the Chapter</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Graphical symbols, View of fuses, knife switches, couplings and bearings</td>
<td>18</td>
<td>Deleted Catridge fuse, SPDT, DPST, TPST knife switches and bearings</td>
<td>12 (deleted)</td>
<td>06</td>
<td>Topics are outdated</td>
</tr>
<tr>
<td>2</td>
<td>DC Machines</td>
<td>24</td>
<td>Deleted Sketches of Starters</td>
<td>2 (deleted)</td>
<td>22</td>
<td>Covered in theory</td>
</tr>
<tr>
<td>3</td>
<td>DC and AC windings</td>
<td>15+15</td>
<td>No Change</td>
<td>10 (deleted)</td>
<td>20</td>
<td>Can be covered in prescribed periods</td>
</tr>
<tr>
<td>4</td>
<td>Sketches of measuring instruments and Guarding systems</td>
<td>12</td>
<td>Totally deleted</td>
<td>12 (deleted)</td>
<td>0</td>
<td>Covered in theory</td>
</tr>
<tr>
<td>5</td>
<td>Earthing systems & Substations</td>
<td>9+18</td>
<td>Pole mounted SS, 33/11 KV SS, Pipe & Plate earthing Line diagram of power plants</td>
<td>24 (deleted)</td>
<td>03</td>
<td>Covered in theory</td>
</tr>
<tr>
<td>6</td>
<td>Supporting Structures</td>
<td>12</td>
<td>Stays & Single circuit towers</td>
<td>06 (deleted)</td>
<td>06</td>
<td>Covered in theory</td>
</tr>
<tr>
<td>7</td>
<td>Induction Motors</td>
<td>25</td>
<td>Starters</td>
<td>07 (deleted)</td>
<td>18</td>
<td>Topic Covered in theory</td>
</tr>
<tr>
<td></td>
<td>Switchgear, protection & Cables</td>
<td>17</td>
<td>Totally deleted</td>
<td>17(deleted)</td>
<td>-----</td>
<td>Covered in theory</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
<td>----</td>
<td>-----------------</td>
<td>-------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>8</td>
<td>Transformers</td>
<td>15</td>
<td>""</td>
<td>""</td>
<td>15</td>
<td>Can be covered in prescribed periods</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>90+90</td>
<td>""</td>
<td>-90</td>
<td>90</td>
<td>TOTAL</td>
</tr>
</tbody>
</table>
ELECTRICAL ENGINEERING DRAWING

Subject Title : Electrical Engineering Drawing
Subject code : EE-407
Periods/week : 06
Periods/ Semester : 90

TIME SCHEDULE

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Major Topics</th>
<th>Periods</th>
<th>Weightage of marks</th>
<th>Short Questions</th>
<th>Essay Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Views of fuses, Knife Switches, Couplings and bearings</td>
<td>06</td>
<td>05</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>D.C.Machines</td>
<td>22</td>
<td>15</td>
<td>1</td>
<td>1/2</td>
</tr>
<tr>
<td>3.</td>
<td>Transformers</td>
<td>15</td>
<td>20</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>Induction motors</td>
<td>18</td>
<td>20</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5.</td>
<td>D C and A C Windings</td>
<td>20</td>
<td>10</td>
<td>-</td>
<td>1/2</td>
</tr>
<tr>
<td>6.</td>
<td>Supporting Structures</td>
<td>06</td>
<td>05</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>Sub stations & Earthing Systems</td>
<td>03</td>
<td>05</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>90</td>
<td>60</td>
<td>04</td>
<td>03</td>
</tr>
</tbody>
</table>

OBJECTIVES
On the completion of the course the student should be able to comprehend the following

1.0 Views of fuses, Knife Switches, Couplings and Bearings
1.1 Draw Sectional and end view of Rewirable fuse
1.2 Draw Sectional and end view of HRC fuse
1.3 Draw Plan and end view of Double pole double throw knife switch
1.4 Draw sectional elevation and end view of flange coupling
1.5 Draw sectional elevation and end views of End plate with bearing

2.0 DC machines
2.1 Draw views, including sectional views of yoke and pole assembly
2.2 Draw sectional view of armature of DC machine
2.3 Draw sectional views of commutator of a DC Machine
2.4 Draw Sectional elevation and end view of a DC Machine

3.0 Transformers
3.1 Draw different core sections of a Transformer.
3.2 Draw sectional views of a single-phase core type transformer from the given data
3.3 Draw sectional views of a 3 phase core type transformers from given data

4.0 Induction motors
4.1 Draw the sectional view of stator of an induction motor
4.2 Draw the sectional view of Squirrel cage Rotor
4.3 Draw the sectional view of Slip ring rotor
4.4 Draw the sectional elevation and end view of assembled Squirrel cage induction motor
4.5 Draw the sectional elevation and end view of assembled Slip ring induction motor

5.0 DC and AC Windings
5.1 Draw Developed winding diagram for single layer lap connected Armature of a DC machine with ring diagram and winding table
5.2 Draw Developed winding diagram for double layer lap connected Armature of a DC machine with ring diagram and winding table
5.3 Draw Developed winding diagram for single layer wave connected Armature of a DC machine with ring diagram and winding table
5.4 Draw Developed winding diagram for double layer wave connected Armature of a DC machine with ring diagram and winding table
5.5 Draw developed winding diagram for a 3-phase single layer lap winding.
5.6 Draw developed winding diagram for a 3-phase single layer wave winding.
5.7 Draw developed winding diagram for a 3-phase double layer lap winding
5.8 Draw developed winding diagram for a 3-phase double layer wave winding

6.0 Supporting Structures.
6.1 Draw the sketch of 33 KV Tower.
6.2 Draw the sketch of 132 KV double circuit tower
6.3 Draw the sketch of 400 KV double circuit tower
6.4 Draw the sketch of 11 KV/440V PSCC Pole
6.5 Draw the sketch of steel tubular Pole

7.0 Substations and earthing systems
7.1 Draw the single line Diagram of 220 KV/ 33 KV Substation
7.2 Draw the sketch of 11 KV/ 400V Plinth mounted substation.
7.3 Draw the dimensioned sketched of substation earthing

COURSE CONTENTS

1. Views of fuse, switches
 Views of fuses, Rewirable fuse, HRC fuse, DPDT Knife switch, Flange coupling, End plate with bearings

2. DC machine parts: (Assembled views in section)
 Stator yoke and pole assembly, Armature of a small DC machine, Commutator of DC machine,

3. Transformers
 Core sections, sectional views of single-phase core type, three phase core type transformers.
4. **Induction motors**
Elevation and End Views of 3 phase Squirrel cage induction motors and 3 phase slip ring induction motors

5. **DC and AC winding**
Single layer Lap and wave winding-Double layer lap and wave windings-Winding tables-Ring diagram-Brush location-Equalizer rings. AC 3 phase single layer and double lap and wave windings

6. **Supporting Structures**
Views of-line supports-Towers

7. **Substations and earthing systems**
Plinth mounted Substation Line diagram of 220 Kv/33Kv Substation. Substation earthing systems

REFERENCE BOOKS
2. Electrical Engineering Drawing by Dargon.
Subjectwise modification table for restructuring of the syllabus.
Branch... ELECTRICAL & ELECTRONICS ENGG.,

<table>
<thead>
<tr>
<th>Sno</th>
<th>Name of the Experiment</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>No. of period s</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Logic gates - I</td>
<td>No change</td>
<td>No change</td>
<td>No change</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Logic gates - II</td>
<td>No change</td>
<td>No change</td>
<td>No change</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Half adder/subtractor</td>
<td>Deleted subtractor</td>
<td>As it is not covered in theory, Subtractor deleted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Full adder/subtractor</td>
<td>Deleted subtractor</td>
<td>As it is not covered in theory, Subtractor deleted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Flip-flops</td>
<td>Split into two separate Experiments</td>
<td>Separate experiments required</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>counters</td>
<td>Deleted</td>
<td>due to restructuring of syllabus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Shift Registers</td>
<td>No change</td>
<td>No change</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Decade counter</td>
<td>No change</td>
<td>No change</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Transfer of data between two registers</td>
<td>Deleted</td>
<td>due to restructuring of syllabus, deleted from the theory topics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comparator</td>
<td>Deleted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Comparator</td>
<td>Deleted</td>
<td>due to restructuring of syllabus, deleted from the theory topics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>A/D Converter</td>
<td>Deleted</td>
<td>due to restructuring of syllabus, deleted from the theory topics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>D/A converter</td>
<td>Deleted</td>
<td>due to restructuring of syllabus, deleted from the theory topics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Multiplexer</td>
<td>Deleted</td>
<td>due to restructuring of syllabus, deleted from the theory topics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>De multiplexer</td>
<td>Deleted</td>
<td>due to restructuring of syllabus, deleted from the theory topics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Boolean function</td>
<td>deleted</td>
<td>due to restructuring of syllabus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>60</td>
<td>-15 45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LIST OF EXPERIMENTS

OBJECTIVES
On completion of the course the student should be able to
 I. Perform tests on different Digital Electronic circuits.

I. Digital Electronics

1. Construct and verify the truth tables of Basic gates - AND, OR, NOT gates
2. Construct and verify the truth tables of Universal gates - NAND, NOR gates
3. Construct and verify the truth tables of Exclusive OR & Half-adder using logic gates.
4. Construct and verify the truth table of Full adder circuit using logic gates.
5. Verification of truth tables for RS, RST Flip-flops.
6. Verification of truth tables for JK, D, T Flip-flops.
7. Verify function of a 4-bit shift register
8. Construct and test a decade counter.
Subjectwise modification table for restructuring of the syllabus

Branch… ELECTRICAL & ELECTRONICS ENGG.,

<table>
<thead>
<tr>
<th>Sub-Code as per C-05</th>
<th>EE-607</th>
<th>Sub-Code as per C-09</th>
<th>EE-409</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the subject as per C-05</td>
<td>Micro controllers Lab</td>
<td>Name of the subject as per C-09</td>
<td>Microcontroller lab</td>
</tr>
<tr>
<td>No. of periods allotted as per C-05</td>
<td>60</td>
<td>No. of periods allotted as per C-09</td>
<td>45 (For EE-408 & EE-409) for Two labs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sno</th>
<th>Name of the Experiment</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8- bit addition and subtraction</td>
<td>Deleted subtraction</td>
<td></td>
<td></td>
<td></td>
<td>due to restructuring of syllabus</td>
</tr>
<tr>
<td>2</td>
<td>Multi byte addition</td>
<td></td>
<td>No change</td>
<td></td>
<td></td>
<td>No change</td>
</tr>
<tr>
<td>3</td>
<td>Block transfer of data</td>
<td></td>
<td>No change</td>
<td></td>
<td></td>
<td>No change</td>
</tr>
<tr>
<td>4</td>
<td>Sum of given n numbers</td>
<td></td>
<td>No change</td>
<td></td>
<td></td>
<td>No change</td>
</tr>
<tr>
<td>5</td>
<td>Sum of first n natural numbers</td>
<td></td>
<td>No change</td>
<td></td>
<td></td>
<td>No change</td>
</tr>
<tr>
<td>6</td>
<td>Arithmetic programming</td>
<td>Deleted</td>
<td></td>
<td></td>
<td></td>
<td>due to restructuring of syllabus</td>
</tr>
<tr>
<td>7</td>
<td>8 bit multiplication</td>
<td></td>
<td>No change</td>
<td></td>
<td></td>
<td>No change</td>
</tr>
<tr>
<td>8</td>
<td>Biggest data in an array</td>
<td></td>
<td>No change</td>
<td></td>
<td></td>
<td>No change</td>
</tr>
<tr>
<td>9</td>
<td>Hex to BCD conversion</td>
<td></td>
<td>No change</td>
<td></td>
<td></td>
<td>No change</td>
</tr>
<tr>
<td>10</td>
<td>Hex to ASCII conversion</td>
<td>Deleted</td>
<td></td>
<td></td>
<td></td>
<td>due to restructuring of syllabus</td>
</tr>
<tr>
<td>11</td>
<td>BCD to HEX conversion</td>
<td>Deleted</td>
<td></td>
<td></td>
<td></td>
<td>due to restructuring of syllabus</td>
</tr>
<tr>
<td>12</td>
<td>Microcontroller interfacing</td>
<td>Deleted</td>
<td></td>
<td></td>
<td></td>
<td>due to restructuring of syllabus, deleted from the theory topics</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td></td>
<td>-15</td>
<td></td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>
MICROCONTROLLER LAB

Subject Title : Microcontroller Lab
Subject Code : EE-409
Periods/Week : 3 (For EE-408 & EE-409)
Periods/Semester : 45 (For EE-408 & EE-409)

LIST OF EXPERIMENTS

OBJECTIVES
On completion of the course the student should be able to

II. Execute the programs using 8051 Microcontroller

I. Assembly language programming on 8051

Execute the following programs using 8051 Microcontroller
1. Block transfer of data.
2. 8 – bit addition
3. Multi byte addition
4. Sum of given n numbers
5. Sum of first n natural numbers
6. 8 bit multiplication using MUL instruction
7. Biggest data in given data array
8. Hex to BCD conversion
<table>
<thead>
<tr>
<th>Sno</th>
<th>Name of the Sub Topic</th>
<th>No. of periods As per C-05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of period s added / deleted</th>
<th>No. of period s As per C-09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unit VI</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>9</td>
<td>Is need based</td>
</tr>
<tr>
<td></td>
<td>Listening Activity: *Making Comparisons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Speaking Activity: *describing an event</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Comparison and Contrast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Unit VII</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>9</td>
<td>Is need based</td>
</tr>
<tr>
<td></td>
<td>Listening Activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Drawing inferences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Speaking Activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Making Comparisons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Unit VIII</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>9</td>
<td>Is need based</td>
</tr>
<tr>
<td></td>
<td>Listening Activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Speaking Activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Unit IX</td>
<td>-</td>
<td>---</td>
<td>---</td>
<td>9</td>
<td>Is need based</td>
</tr>
<tr>
<td></td>
<td>Listening Activity: *Everyday English</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Speaking Activity: *Stating directions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Group discussions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Unit X</td>
<td>----</td>
<td>---</td>
<td>---</td>
<td>9</td>
<td>Is need based</td>
</tr>
<tr>
<td></td>
<td>Listening Activity: *Everyday English continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Speaking Activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>
English Communication Lab

Periods/Week: 03
Periods per semester: 45

Introduction:

The course will cater to the need of improving communicative competence. The course would give the students practice in listening and speaking.

TIME SCHEDULE

<table>
<thead>
<tr>
<th>S. No</th>
<th>Major Topics</th>
<th>No. of Periods</th>
<th>Weightage of Marks**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unit VI</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>
| | Listening Activity:
*Making Comparisons
Speaking Activity:
*describing an event
*Comparison and Contrast | | |
| 2 | **Unit VII** | 9 | 10 |
| | Listening Activity
*Drawing inferences
Speaking Activity
*Making Comparisons | | |
| 3 | **Unit VIII** | 9 | 10 |
| | Listening Activity:
Speaking Activity: | | |
| 4 | **Unit IX** | 9 | 10 |
| | Listening Activity:
*Everyday English
Speaking Activity:
*Stating directions
*Group discussions | | |
| 5 | **Unit IX** | 9 | |
| | Listening Activity:
*Everyday English continued
Speaking Activity: | | |
| | **Total** | 45 | 50 |

Weightage of Marks: Tasks to test listening skills
Tasks to test speaking skills through role plays describing processes, objects etc. and group discussions
Objectives:
On completion of the course the student should be able to

Improve their listening skills
Improve their speaking skills

Course Contents:

Activities that improve situational interaction
Activities that improve cooperative learning and soft skills.

Course Material:
The Communications Skills laboratory Manual presently in use may be continued by choosing Six to Ten Units. The manual is supported by CD for audio output.

Scheme of Examination:

<table>
<thead>
<tr>
<th>Name of Subject</th>
<th>Instruction periods per week</th>
<th>Total periods per Semester</th>
<th>Scheme of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Duration</td>
</tr>
<tr>
<td>Eng Com Skills Level II</td>
<td>3</td>
<td>45</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>
V SEMESTER
The industrial training shall carry 750 marks and pass marks is 50%. A candidate failing to secure the minimum marks should complete it at his own expenses. No apprenticeship training stipend is payable in such case. During Industrial training the candidate shall put in a minimum of 90% attendance.
OBJECTIVES

On completion of a spell of practical training in a industry, the student will be able to

1.0 Know the organizational set up from top executive to workmen level
 1.1 Know the function of each department/section
 1.2 Know the inter relationship among various
department/sections

2.0 Know the various raw materials used as feed stock and their source.
 2.1 Understand the various intermediates produced and their further processing and / or
waste disposal.

 2.2 Know the final products, its composition and its commercial importance’s, uses and
applications.

3.0 Understand the various stages involved in processing, sequential
arrangement of different equipment.

 3.1 Draw the flow diagram, detail flow diagram of each process
 3.2 Understand the arrangement of various equipment and machinery in systematic manner
in a less possible area of site.

4.0 Know the various analytical methods used in the quality control department
 4.1 Understand the experimental methods to find out the quality of the product
 4.2 Understand various tools, instruments used for quality checking.

5.0 Know the trouble shooting in process operation
 5.1 Know preventive precautions of each equipment in the plant.
 5.2 Startup and shut down procedures for the equipment and plant.

6.0 Know the importance of safety in industries
 6.1 Understand the safety about personnel protection, equipment protection
 6.2 Know the usage of various safety devices
 6.3 Precautionary measures to be taken.
7.0 Know the various pollutants emitted from the plant.
 9.1 Understand effects of pollutants.
 9.2 Understand treatment method and disposal.
 9.3 Know the effective methods pollution control.

COURSE CONTENTS

1. Organizational set up
2. Raw materials, intermediates and end products
3. Process descriptions (Process flow diagrams and line tracing, detailed flow diagrams etc.)
4. Quality control of raw materials, intermediates and end products
5. Operational troubles and preventive measures
6. Safety aspects (personnel, equipment etc.)
7. Pollution control

INDUSTRIAL TRAINING SCHEME

V SEMESTER

1. A candidate shall be assessed twice in the spell of industrial training i.e. at the end of third month and finally before he/she completed the industrial training
2. The assessment shall be carried out by a committee comprising of
 (a) A representative of the Industry where the candidate is undergoing training
 (b) A staff member of the concerned section of the polytechnic.
3. The assessment at the end of the third month and the end of training shall each carry 200 marks for the progress made during the corresponding period of training.
4. The remaining 250 marks are allotted as follows:
 For the training report 50 marks,
 For maintenance of log book 50 marks
 For seminar 50 marks.
 These are to be evaluated at the institution at the end of training by a committee consisting following staff members (1) Head of Dept. concerned.(2) Staff member who assessed the student in the industry (3) Any other staff member of concerned department
5. The progress made during the end of assessment will be evaluated on the basis of the following parameters.
ASSESSMENT SCHEME

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name of the Parameter</th>
<th>Max. Marks Allotted for each Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Attendance and punctuality</td>
<td>10</td>
</tr>
<tr>
<td>2.</td>
<td>Familiarity with Technical terms</td>
<td>12</td>
</tr>
<tr>
<td>3.</td>
<td>Familiarity with tools and material</td>
<td>20</td>
</tr>
<tr>
<td>4.</td>
<td>Attitude towards job</td>
<td>14</td>
</tr>
<tr>
<td>5.</td>
<td>Manual skills</td>
<td>8</td>
</tr>
<tr>
<td>6.</td>
<td>Application of knowledge</td>
<td>20</td>
</tr>
<tr>
<td>7.</td>
<td>Problem solving skills</td>
<td>20</td>
</tr>
<tr>
<td>8.</td>
<td>Comprehension and observation</td>
<td>8</td>
</tr>
<tr>
<td>9.</td>
<td>Safety and Environmental consciousness</td>
<td>6</td>
</tr>
<tr>
<td>10.</td>
<td>Human relations</td>
<td>8</td>
</tr>
<tr>
<td>11.</td>
<td>Ability to communicate</td>
<td>12</td>
</tr>
<tr>
<td>12.</td>
<td>Supervising ability</td>
<td>20</td>
</tr>
<tr>
<td>13.</td>
<td>General conduct during the period</td>
<td>12</td>
</tr>
<tr>
<td>14.</td>
<td>Maintenance of dairy</td>
<td>30</td>
</tr>
</tbody>
</table>

Total: 200
VI SEMESTER
Subjectwise modification table for restructuring of the syllabus.
Branch... Electrical & Electronics engg

<table>
<thead>
<tr>
<th>Sub-Code as per C-05</th>
<th>EE-601</th>
<th>Sub-Code as per C-09</th>
<th>EE-601</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the subject as per C-05</td>
<td>IME</td>
<td>Name of the subject as per C-09</td>
<td>IME</td>
</tr>
<tr>
<td>No. of periods allotted as per C-05</td>
<td>90</td>
<td>No. of periods allotted as per C-09</td>
<td>75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sno</th>
<th>Name of the Chapter</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Principles and functions of Management</td>
<td>6</td>
<td>nil</td>
<td>-1</td>
<td>5</td>
<td>Extra periods deleted</td>
</tr>
<tr>
<td>2.</td>
<td>Organisation structure & organisational behaviour</td>
<td>18</td>
<td>Job satisfaction, quality of work life, group dynamics, conflict resolution -deleted</td>
<td>-8</td>
<td>10</td>
<td>Not required for diploma students</td>
</tr>
<tr>
<td>3</td>
<td>Production Management</td>
<td>10</td>
<td>nil</td>
<td>nil</td>
<td>10</td>
<td>---</td>
</tr>
<tr>
<td>4.</td>
<td>Materials Management</td>
<td>12</td>
<td>Material handling equipment -deleted</td>
<td>-2</td>
<td>10</td>
<td>Repeated in TE-III</td>
</tr>
<tr>
<td>5.</td>
<td>Marketing ,Sales & Feasibility study</td>
<td>10</td>
<td>Advertisement topic deleted Elements of cost and break even analysis topics are transferred from 4th chapter</td>
<td>+2</td>
<td>12</td>
<td>1. Not required for diploma students 2. Added for continuity of subject.</td>
</tr>
<tr>
<td>6.</td>
<td>Industrial legislation & safety</td>
<td>12</td>
<td>Industrial dispute act , Workmen’s compensation act, minimum wages act, ESI act hazardous in Industry deleted</td>
<td>-4</td>
<td>08</td>
<td>---</td>
</tr>
<tr>
<td>7.</td>
<td>Introduction to ISO 9000 & T.Q.M.</td>
<td>10</td>
<td>nil</td>
<td>nil</td>
<td>10</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>Role of Enterpreneur and Enterprenuerial Development</td>
<td>12</td>
<td>Planned and co-ordinate effort , demand and market survey - deleted</td>
<td>-2</td>
<td>10</td>
<td>1. Not required for diploma students 2. Covered in 5th chapter.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>90</td>
<td>-15</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INDUSTRIAL MANAGEMENT AND ENTREPRENEURSHIP
(COMMON FOR M/EE)

Subject Title : Industrial Management And Entrepreneurship
Subject Code : EE –601
Periods/Week : 05
Periods per Semester : 75

TIMESCHEDULE

<table>
<thead>
<tr>
<th>S. No.</th>
<th>MajorTopics</th>
<th>Periods</th>
<th>Weightage Of Marks</th>
<th>Short Answer Question</th>
<th>Essay Type Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Principles and functions of Management</td>
<td>5</td>
<td>08</td>
<td>01</td>
<td>½</td>
</tr>
<tr>
<td>2.</td>
<td>Organisation structure & organisational behaviour</td>
<td>10</td>
<td>21</td>
<td>02</td>
<td>1 ½</td>
</tr>
<tr>
<td>3.</td>
<td>Production Management</td>
<td>10</td>
<td>13</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>4.</td>
<td>Materials Management</td>
<td>10</td>
<td>16</td>
<td>02</td>
<td>01</td>
</tr>
<tr>
<td>5.</td>
<td>Marketing ,Sales & Feasibility study</td>
<td>12</td>
<td>13</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>6.</td>
<td>Industrial legislation & safety</td>
<td>8</td>
<td>13</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>7.</td>
<td>Introduction to ISO 9000 & T.Q.M.</td>
<td>10</td>
<td>13</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>8.</td>
<td>Role of Enterpreneur and Enterprenuerial Development</td>
<td>10</td>
<td>13</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>75</td>
<td>110</td>
<td>10</td>
<td>08</td>
</tr>
</tbody>
</table>

OBJECTIVES

On completion of the course the student will be able to

1.0 Understand the principles of management as applied to industry.
 1.1 Define industry, commerce (Trade) and business.
 1.2 Know the need for management.
 1.3 Understand the evolution of management
 1.4 Explain the principles of scientific management.
 1.5 Understand functions of Management.
 1.6 Differentiate between management and administration.

2.0 Know types of ownerships, the organisation structure of an industry and the behaviour of an individual in an organisation.
 2.1 Understand types of ownerships
2.2 Differentiate types of ownerships.
2.3 Understand salient features of joint stock companies.
2.4 Understand the philosophy and need of organisation structure of an industry.
2.5 Understand the line, staff and Functional organisations.
2.6 List the advantages and limitations of line, staff and functional organisations.
2.7 List different departments in a large scale industry.
2.8 Explain the factors of effective organisation.
2.9 Understand organisational behaviour.
2.10 Conduct for analysis.
2.11 Assess the incurring applicants.
2.12 Outline the selection process.
2.13 Understand the sources of manpower.
2.14 State motivation theories.
2.15 State Maslow's Hierarchy of needs.
2.16 List out different leadership models.
2.17 Explain the trait theory of leadership.
2.18 Explain behavioural theory of Leadership.
2.19 Explain the process of decision Making.
2.20 Outline the communication process.

3.0 Understand the different aspects of production management.
3.1 Differentiate and integrate production, planning and control.
3.2 Relate the production department with other departments.
3.3 State the need for planning and it’s advantages.
3.4 Explain the stages of Production, planning and control.
3.5 Explain routing methods.
3.6 Explain scheduling methods.
3.7 Explain dispatching.
3.8 Draw PERT/CPM networks.
3.9 Identify the critical path.

4.0 Understand the role of materials management industries.
4.1 Explain the role of the materials in Industry.
4.2 Derive expression for inventory control.
4.3 Explain ABC analysis.
4.4 Define safety stock.
4.5 Define reorder level.
4.6 Derive an expression for economic ordering quantity.
4.7 Explain stock layout.
4.8 List out stores records.
4.9 Explain the Bin card.
4.10 Describe Cardex method.
4.11 Explain purchasing procedures.
4.12 List out purchase records.
4.13 Describe the stores equipment

5.0 Understand marketing, sales and feasibility study.
5.1 Explain marketing functions.
5.2 Explain Sales function.
5.3 List out market conditions.
5.4 Differentiate Sellers and Buyers’ market.
5.5 Differentiate monopoly, oligarchy, and perfect competition.
5.6 Conduct market and demand surveys.
5.7 Differentiate product and production analysis.
5.8 Identify the input materials, i.e. Bill of materials
5.9 Explain the concept of cost.
5.10 List out the elements of cost.
5.11 Explain the concept of contribution.
5.12 Explain break-even analysis.
5.13 Define the main policy requirements.
5.14 Decide the location.
5.15 Evaluate Economic and Technical factors.
5.16 Preparation of feasibility study.
5.17 List out different products currently in demand with market or industry.

6.0 Comprehend the provisions of industrial legislation in India. & Safety procedures
6.1 Describe employer and employee relations.
6.2 Describe the mechanics of Trade Unions.
6.3 Describe mechanics of settlement of in outs.
6.4 Explain the significance of collective bargain.
6.5 List out Welfare activities.
6.6 List out subsidy schemes.
6.7 Explain the total welfare concept.
6.8 List out the rights and responsibilities of employees and employers.
6.9 List out the salient features of Indian Factories Act.
6.10 Explain the importance of safety at Work place.
6.11 List out the important provisions related to safety.
6.12 Explain the significance and mechanics of safety education.
6.13 Explain hazard and accident.
6.14 List out different hazards in the Industry.
6.15 Explain the causes of accidents.
6.16 Explain the direct and indirect cost of accidents.
6.17 List out provisions of Indian Electricity Rules laid in the electricity act 1923.

7.0 Understand ISO 9000 & TQM.
7.1 Understand the concept of quality.
7.2 Know the quality systems and elements of quality systems.
7.3 Know the principles of quality Assurance.
7.4 Know the Indian Standards on quality systems.
7.5 Know the evolution of ISO standards.
7.6 Discuss ISO standards and ISO 9000 series of quality systems.
7.7 State the constituents of ISO 9000 series of standards for quality systems.
7.8 State the outstanding features and drawbacks of ISO 9000 series of standards.
7.9 List the beneficiaries of ISO 9000.
7.10 Understand 5-S principles and ZERO DEFECT.

8.0 Understand the role of entrepreneur in economic development and in improving the quality of life.
8.1 Outline the concepts of Entrepreneurship.
8.2 Define the word entrepreneur.
8.3 Determine the role of Entrepreneurship.
8.4 Describe the profile of an entrepreneur.
8.5 Explain the requirements of an entrepreneur.
8.6 Outline the expectations of Entrepreneurship.
8.7 Determine the role of entrepreneurs in promoting Small Scale Industries.
8.8 Describe the details of self-employment schemes.
8.9 Explain the method of product selection.
8.10 Explain the method of site selection.
8.11 Outline the method of plant layout.
8.12 List the financial assistance programmes.
8.13 List out the organisations that help an entrepreneur.

COURSE CONTENTS

1. **Principles and functions of management.**

2. **Organisation Structure & organisational behaviour.**
 Role of industry, Types of ownership – Sole proprietorship, Partnership, Private limited, Public limited company, Industrial Cooperatives, Philosophy, types of Organisations, Line and Staff and functional organisations. Advantages and limitations, departments in a large scale industry. Effective organisation. Job analysis, Assessing applicants, selection, motivation, different theories, Leadership in organisation, decision making, communication,

3. **Production Management.**
 Production, planning and control, relation with other departments, need for planning and its advantages, Routing, scheduling, despatching, PERT and CPM, simple problems.

4. **Materials Management.**
 Materials in industry, inventory control model, ABC Analysis, Safety stock, re-order level, Economic ordering quantity, Stores layout, stores equipment, Stores records, purchasing procedures, purchase records, Bin card, Cardex.

5. **Marketing, Sales & Feasibility Study**

6. **Industrial Legislation & safety.**
 Employer – Employee relations, Trade, Union Settlement of disputes, collective bargaining, Welfare activities, subsidies, Total Welfare concept, rights and responsibilities and Employers and employees. Salient features of Indian Factories

7. **Introduction to ISO 9000 and TQM.**
 Concept of quality discussed by B. Crosby W. Edward, Deming, Joseph M. Jura Koori Ishikawa, Genichi Taguchi, Shigco Shingo.
 Quality systems – Definitions of the terms used in quality systems like, quality policy, quality management, quality systems, quality control and quality assurance.
 Elements quality systems : Management responsibility, Quality system, contract review, design control, document control, purchasing, purchaser – supplied product, product identification and traceability, process control, Inspection and testing.
 Principles of quality assurance – Definition of quality assurance.
 Know the necessity of International standards – Evolution of ISO. **5-S** principles – importance – meaning – approach – benefits
 Drawbacks of ISO 9000 series of standards, list the beneficiaries of ISO 9000 (Whom does ISO 9000 help).

8. **Role of Entrepreneur & Entrepreneurial Development.**
 Concept, definition, role, expectation, entrepreneurship Vs Management, promotion of S.S.I. Self – employment schemes. Product selection, site selection, plant layout, profile and requirement, Institutional support needed, financial assistance programmes.

REFERENCE BOOKS

1. Industrial Engineering and Management -by O.P Khanna
2. Production Management- by Buffa.
5. Personnel Management by Flippo.
Subject wise modification table for restructuring of the syllabus.

Branch… **ELECTRICAL & ELECTRONICS ENGG.**

<table>
<thead>
<tr>
<th>Sub-Code as per C-05</th>
<th>Name of the subject as per C-05</th>
<th>Sub-Code as per C-09</th>
<th>Name of the subject as per C-09</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-503</td>
<td>A.C.Machines-II</td>
<td>EE-602</td>
<td>A.C.Machines-II</td>
</tr>
<tr>
<td>No. of periods allotted as per C-05</td>
<td>75</td>
<td>No. of periods allotted as per C-09</td>
<td>75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S No</th>
<th>Name of the Chapter</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Synchronous motors</td>
<td>20</td>
<td>Nil</td>
<td>20</td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>Three phase Induction motors</td>
<td>30</td>
<td>Nil</td>
<td>30</td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>Single phase Induction motors</td>
<td>15</td>
<td>- 2</td>
<td>13</td>
<td>Excess periods allotted</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Single phase commutator motors</td>
<td>10</td>
<td>+2</td>
<td>12</td>
<td>Adequate periods not allotted</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>75</td>
<td>-</td>
<td>75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Subject Title : A.C. MACHINES –II
Subject Code : EE-602
Periods/ Week : 05
Periods /Semester : 75

TIMESCHEDULE

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Major Topics</th>
<th>Periods</th>
<th>Weightage of Marks</th>
<th>Short Questions</th>
<th>Essay Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Synchronous motors.</td>
<td>20</td>
<td>29</td>
<td>03</td>
<td>02</td>
</tr>
<tr>
<td>2.</td>
<td>3- Phase Induction Motors</td>
<td>30</td>
<td>49</td>
<td>03</td>
<td>04</td>
</tr>
<tr>
<td>3.</td>
<td>1- Phase Induction Motors</td>
<td>15</td>
<td>19</td>
<td>03</td>
<td>01</td>
</tr>
<tr>
<td>4.</td>
<td>1- Phase Commutator Motors</td>
<td>10</td>
<td>13</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>75</td>
<td>110</td>
<td>10</td>
<td>08</td>
</tr>
</tbody>
</table>

OBJECTIVES
On the completion of the study of the subject the student should be able to study of the comprehend the following

1.0 Comprehend the working of synchronous motors.
 1.1 Principle of Production of Rotating Magnetic Field in 3-phase System.
 1.2 Explain the construction of synchronous motor and it’s parts
 1.3 Explain the principles of working of synchronous motors.
 1.4 Explain the performance of synchronous motor on Load with phase diagrams.
 1.5 Explain the effects of varying excitation at constant load with phasor diagrams,
 1.6 Explain the significance and account for the shape of ‘V’ curves, Inverted V curve,
 1.7 Explain how a Synchronous motor can be used as a Synchronous condenser.
 1.8 Explain the phenomenon of HUNTING.
 1.9 State “How HUNTING is prevented”?
 1.10 Explain the starting methods of synchronous motor by
 (a). Auxiliary motor and (b). Damper winding
 1.11 List the applications of synchronous motor.

2.0 Comprehend the working of 3 phase Induction Motors,
 2.1 Explain the advantages of Induction Motors.
 2.2 Explain the construction of Induction motor- slip ring and squirrel cage
 2.3 State the principle of working of 3 phase induction motor.
 2.4 Explain working of 3 phase induction motor on no load –on load
 2.5 (a). Derive the equation relating TORQUE, POWER and SLIP.
 (b). Draw Torque – Slip curves,
 2.6 Explain how an induction motor is treated as a generalized transformer.
 2.7 Explain : (a) No-load test (b) Blocked rotor test and
 (c) Draw circle diagram with the help of above tests.
2.8 Solve problems on the evaluation of the performance of induction motors with given data.
2.9 Explain methods of starting of induction motors.
2.10 Sketch the circuit diagram and explain the working of
2.11 Explain construction features of double cage rotor motor.
2.12 Explain the speed control of inductor motors by
 (c). Injecting voltage in rotor circuit. (d). Cascading
2.13 State the applications of inductor motors
2.14 Compare synchronous motors with induction motors.

3.0 Comprehend the working of I phase induction motors.
3.1 State the types of I phase induction motors.
3.2 Explain the working of 1 – phase Induction motor.
3.3 Explain why a Single-phase Induction motor is not Self starting motor.
3.4 Explain the working of split phase motor, capacitor start motor and shaded pole motor.

4.0 Comprehend the working of single phase Commutator motors .
4.1 State the construction and working of different types of single phase Commutator motors-, A.C.Series motor, universal motor, stepper motor, permanent magnet brushless motor.
4.2 Explain applications of above motors.

COURSE CONTENTS

1. Synchronous Motors

2. Three Phase Induction Motors

3. **Single phase Induction Motors**
 Essential parts and constructional features of single phase motors – self starting -split phase, capacitors start, capacitor run and shaded pole types and Principles of working – Accessories like capacitors, centrifugal switch – function –reversal of rotation Applications and relative merits.

4. **Commutator Motors (Single phase)**

REFERENCE BOOKS

1. Electrical Technology by B.L. Theraja
2. Electrical Technology by J.B. Gupta
3. Electrical Technology by H. Cotton
4. Performance and design of A.C. Machines by M.G, Say
5. Performance of A.C. Machines by Langsdorf
6. Electrical motors applications and control by M.V. Deshpande
Subjectwisemodificationtableforrestructuringofthesyllabus.

Branch… **ELECTRICAL & ELECTRONICS ENGG.,**

<table>
<thead>
<tr>
<th>Sub-Code as per C-05</th>
<th>Name of the subject as per C-05</th>
<th>Sub-Code as per C-09</th>
<th>Name of the subject as per C-09</th>
<th>No. of periods allotted as per C-05</th>
<th>No. of periods allotted as per C-09</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-602</td>
<td>Power Electronics</td>
<td>EE-603</td>
<td>Power Electronics</td>
<td>75</td>
<td>75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S No</th>
<th>Name of the Chapter</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power Electronics Devices</td>
<td>22</td>
<td>1.14 partly deleted and 1.16 deleted (data sheets of power electronics devices) 1.16 & 1.17 added</td>
<td>+4</td>
<td>22</td>
<td>Not relevant Most relevant</td>
</tr>
<tr>
<td>2</td>
<td>Converters and choppers</td>
<td>13</td>
<td>2.6 & 2.8 deleted</td>
<td>-2</td>
<td>13</td>
<td>Contents at higher level</td>
</tr>
<tr>
<td>3</td>
<td>Inverters and cyclo converters</td>
<td>10</td>
<td>3.5 & 3.7 deleted</td>
<td>-2</td>
<td>10</td>
<td>Contents at higher level</td>
</tr>
<tr>
<td>4</td>
<td>Speed control of AC/DC Motors</td>
<td>12</td>
<td>No change</td>
<td>Nil</td>
<td>12</td>
<td>No change</td>
</tr>
<tr>
<td>5</td>
<td>Applications of Power Devices</td>
<td>18</td>
<td>5.5 deleted</td>
<td>Nil</td>
<td>18</td>
<td>Contents at higher level</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>75</td>
<td></td>
<td>-</td>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>
Sn | Major Topics | No. of periods | Weightage of marks | Short Answer Questions | Essay Questions |
---|----------------------------------|----------------|--------------------|------------------------|-----------------|
1 | Power Electronic Devices | 22 | 34 | 3 | 2 1/2 |
2 | Converters & Choppers | 13 | 26 | 2 | 2 |
3 | Inverters and Cycloconverters | 10 | 13 | 1 | 1 |
4 | Speed control of AC / DC Motors | 12 | 16 | 2 | 1 |
5 | Application of Power Devices | 18 | 21 | 2 | 1 1/2 |
 | Total | 75 | 110 | 10 | 8 |

OBJECTIVES

On completion of the study of the subject the student should be able to comprehend the following

1.0 **Understand the construction and working of Power Electronic Devices**
 1.1 List different thyristor family devices.
 1.2 Sketch the ISI circuit symbols for each device.
 1.3 Describe constructional details of SCR.
 1.4 Draw & Explain the Volt – Ampere characteristics of SCR.
 1.5 Mention the ratings of SCR.
 1.6 Explain the construction of GTO SCR
 1.7 Compare the characteristics of GTO SCR and SCR.
 1.8 Give constructional details of Diac & Triac.
 1.9 Draw & Explain the Volt-ampere characteristics of Diac & Triac under forward / reverse bias.
 1.10 State the different modes of Triac triggering.
 1.11 Compare SCR with LASCR.
 1.12 Draw & Explain SCR circuit triggered by UJT.
 1.13 Explain power control circuits Diacs, Triacs & SCR’s.
1.14 Briefly explain the working of Power BJT, Insulated gate bipolar transistor (IGBT)
1.15 Describe the mechanism in protecting power devices.
1.16 Explain the necessity of commutation
1.17 Briefly explain the different methods of commutation schemes

2.0 **Understand the working of converters and Choppers.**
2.1 Classify converters.
2.2 Explain the working of single-phase half wave fully controlled converter with Resistive and R-L loads.
2.3 Understand need of free wheeling diode.
2.4 Explain the working of single phase fully controlled converter with resistive load
2.5 Explain the working of three-phase half wave controlled converter with Resistive load.
2.6 Explain the working principle of chopper.
2.7 Describe the control modes of chopper
2.8 Explain the operation of chopper in all four quadrants.

3.0 **Understand the Inverters and Cyclo converters**
3.1 Explain the working principle of inverter.
3.2 Explain the basic series inverter and parallel inverter
3.3 Explain the working of single-phase bridge inverter using MOSFET.
3.4 Explain the working of voltage source inverter.
3.5 Explain the working of PWM inverter.
3.6 Explain the basic principle of Cyclo converter.

4.0 **Understand speed control of DC / AC Motors**
4.1 Explain the principle of AC voltage control using Phase control with simple circuits and draw waveforms.
4.2 Mention factors affecting the speed of DC Motors.
4.3 Describe speed control for DC Shunt motor using converter.
4.4 Describe speed control for DC Shunt motor using chopper.
4.5 List the factors affecting speed of AC Motors.
4.6 Explain the speed control of induction motor by using converters and inverters (V/F control)

5.0 **Understand Applications of power devices**
5.1 List the types of disturbances in commercial power supply.
5.2 List the devices used to suppress spikes in supply voltages.
5.3 List the advantages of SMPS.
5.4 Explain SMPS with block diagram.
5.5 Classify UPS
5.6 Draw the block diagram of an off-line UPS
5.7 Draw the block diagram of on-line UPS
5.8 List the storage batteries used in UPS.
5.9 Draw and explain the light dimmer circuit using DIAC and TRIAC
5.10 Draw and explain the burglar alarm circuit using SCR.
5.11 Draw and explain the emergency lamp circuit using SCR.
5.12 Draw and explain the battery charger circuit using SCR.
COURSE CONTENTS

1. **Power Electronic Devices**

2. **Converters & Choppers**
 Classification of converters, single phase half wave fully controlled converter, free wheeling diode, single phase fully controlled converter, three phase half wave, three phase full wave controlled converter, choppers- modes, operation.

3. **Inverters & Cyclo converters**
 Classification of invertors-basic series inverter- parallel inverter- single-phase bridge inverter using MOSFET- voltage source inverter- PWM inverter- single Pulse– Cyclo converter – basic principle of operation.

4. **Speed Control of DC /AC Motors**
 DC motor control- Introduction-Speed control of DC shunt motor by using converters and choppers- speed control of induction motor by using V/F control (Converters and invertors control).

5. **Application of Power Devices**
 Switched mode power supplies (SMPS) - Uninterrupted power supplies (UPS) – offline and online UPS – light dimmer, burglar alarm, emergency lamp and battery charger.

REFERENCE BOOKS

2. Power Electronics – Devices, Circuits and applications PHI,New Delhi
3. Industrial Electronics by Chute
4. Industrial Electronics by Mithal
6. Industrial Electronics by Berde
8. Industrial & Power Electronics by Harish Rai
9. Power Electronics by PS Bhimbra
Subjectwisemodificationtableforrestructuringofthesyllabus.

Branch…ELECTRICAL & ELECTRONICS ENGG.,

<table>
<thead>
<tr>
<th>Sub-Code as per C-05</th>
<th>EE-502 and EE-603</th>
<th>Sub-Code as per C-09</th>
<th>EE-604 (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the subject as per C-05</td>
<td>ELE.UTILISATION AND TRACTION IND.DRIVES AND AUTOMATION</td>
<td>Name of the subject as per C-09</td>
<td>ELECTRICAL UTILISATION AND AUTOMATION</td>
</tr>
<tr>
<td>No. of periods allotted as per C-05</td>
<td>75 + 75</td>
<td>No. of periods allotted as per C-09</td>
<td>75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sno</th>
<th>Name of the Chapter</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lighting</td>
<td>12</td>
<td>1.2,1.4,1.9,1.14</td>
<td>-2</td>
<td>10</td>
<td>Introduced in EE-304</td>
</tr>
<tr>
<td>2</td>
<td>Electric heating</td>
<td>09</td>
<td>2.2(b),2.15 deleted</td>
<td>+1</td>
<td>10</td>
<td>More periods are required for the concepts</td>
</tr>
<tr>
<td>3</td>
<td>Welding</td>
<td>10</td>
<td>Deleted</td>
<td>-10</td>
<td>00</td>
<td>Covered in first year workshop practice , AC-1,DC</td>
</tr>
<tr>
<td>4</td>
<td>Refrigeration & Air conditioning, auto wiring</td>
<td>12</td>
<td>deleted</td>
<td>-12</td>
<td>00</td>
<td>Block diagrams of R&AC included.</td>
</tr>
<tr>
<td>5</td>
<td>Electric traction</td>
<td>32</td>
<td>5.23 to 5.25 deleted</td>
<td>-07</td>
<td>25</td>
<td>Objectives modified</td>
</tr>
<tr>
<td>6</td>
<td>Electric Drives and Braking</td>
<td>20 +12</td>
<td></td>
<td>-17</td>
<td>15</td>
<td>Objectives modified</td>
</tr>
<tr>
<td>7</td>
<td>Basics of control systems</td>
<td>12</td>
<td>Deleted</td>
<td>-12</td>
<td>00</td>
<td>Not required</td>
</tr>
<tr>
<td></td>
<td>Course</td>
<td>Credit</td>
<td>Action</td>
<td>Adjusted</td>
<td>Hours</td>
<td>Notes</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------</td>
<td>--------</td>
<td>-----------------</td>
<td>----------</td>
<td>-------</td>
<td>----------------------</td>
</tr>
<tr>
<td>8</td>
<td>PLC and Programming</td>
<td>19</td>
<td>Modified the objectives</td>
<td>-4</td>
<td>15</td>
<td>Objectives modified</td>
</tr>
<tr>
<td>9</td>
<td>PLC interfacing concepts</td>
<td>12</td>
<td>Deleted</td>
<td>-12</td>
<td>00</td>
<td>Not required</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>150</td>
<td></td>
<td>-75</td>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>
ELECTRICAL UTILISATION AND AUTOMATION

Subject Title: ELECTRICAL UTILISATION AND AUTOMATION
Subject Code: EE-604(A)
Periods/Week: 05
Periods/semester: 75

TIME SCHEDULE

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Major Topics</th>
<th>Periods</th>
<th>Weightage of Marks</th>
<th>Short Questions</th>
<th>Essay Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Electric Lighting</td>
<td>10</td>
<td>16</td>
<td>02</td>
<td>01</td>
</tr>
<tr>
<td>2.</td>
<td>Electric heating</td>
<td>10</td>
<td>16</td>
<td>02</td>
<td>01</td>
</tr>
<tr>
<td>3.</td>
<td>Electrical Drives and Braking</td>
<td>15</td>
<td>21</td>
<td>02</td>
<td>1 1/2</td>
</tr>
<tr>
<td>4.</td>
<td>Electric Traction</td>
<td>25</td>
<td>36</td>
<td>02</td>
<td>03</td>
</tr>
<tr>
<td>5.</td>
<td>PLC Programming</td>
<td>15</td>
<td>21</td>
<td>02</td>
<td>1 1/2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>75</td>
<td>110</td>
<td>10</td>
<td>08</td>
</tr>
</tbody>
</table>

OBJECTIVES

On completion of the study of the subject the student will be able to comprehend the following.

1.0 Understand the principles of lighting.
1.1 Explain the nature of light and its propagation
1.2 Define
 a) Plane and solid angles b) Luminous flux
 c) Luminous intensity d) Lumen
 e) Candle power f) Illumination
 g) Brightness h) Polar curve
 i) MHCP j) MSCP
 k) MHSCP

1.3 List the types of lamps used for illumination for different situations such as domestic, industrial, decoration, advertisement and street lighting schemes
1.4 Define glare
1.5 State the requirements of good lighting
1.6 Explain different types of lamp fittings.
1.7 State the uses and advantages of each type
1.8 State and explain the laws of illumination
1.9 Solve problems on laws of illumination.

1.10 Define the terms:
 a) Utilisation factor b) Depreciation factor c) Waste light factor
 d) Reflection factor e) Reduction factor f) Absorption factor
 g) Luminous efficiency h) Specific energy consumption
 j) Space-height ratio
1.14 Design simple Indoor lighting schemes and solve problems on calculation of number of lamps required.

2.0 Understand the principles of electric heating

2.1 State the advantages of electric heating
2.2 List the requirements of good heating material
2.3 State the materials employed for heating
2.4 Explain Resistance heating - Direct and Indirect
2.6 List the Industrial applications of Resistance heating.
2.7 Explain different methods of temperature control of resistance heating with diagrams
2.8 Explain Arc Heating - direct and indirect
2.9 List the Industrial applications of Arc Heating.
2.10 Explain Induction Heating – (Core type and Core less type)
2.11 Explain the principle of dielectric heating
2.12 List the industrial applications of dielectric heating

3.0 Know the types of Electrical Drives and Braking methods of electric motors.

3.1 List the factors governing the selection of electric drive.
3.2 Classify and explain the drives.
3.3 State the advantages and disadvantages of different types of drives.
3.4 State the types of loads for which drives are needed
3.5 Load curves of different types of loads.
3.6 Problems on motor Ratings using load curves.
3.7 State the need of load equalization
3.8 State the use of fly wheels
3.9 State the different types of enclosures and bearings
3.10 State the methods employed for reduction of noise
3.11 Select the suitable motors for the following drives with reasoning
 (a) Domestic (b)lathes (c)drilling machines (d) flour mills
 (d) cranes (e) lifts &hoists (f) grinding machines (g) pump sets (h) punches & presses (i) wood working machines (j) printing (k) belt conveyor (l) textile mills (m) paper mills (n) rolling mills (o) ship propulsion (p) mines (q) cement works.
3.12 Draw the Electrical circuit diagram of a Refrigerator and explain the parts.
3.13 Draw the Electrical Circuit diagram of an Air Conditioner and explain the parts.
3.14 State the advantages of electric braking.
3.15 Explain different methods of electric braking
3.16 Explain plugging of D.C. shunt and Series motors and three phase Induction Motor.
3.17 Problems on Plugging of D.C.Motors
3.18 Explain Rheostatic Braking of D.C. Shunt and Series Motors(Theory only)
3.19 Explain Regenerative braking of D.C. shunt and series motor and three-phase induction motor(Theory only).
4.0 Electric Traction.
4.0 Introduction and advantages of Electric traction.
4.1 Give the classification of systems of track electrification.
4.2 List the types of services (main line, suburban and urban) Sketch the speed-time curves for the above services
4.3 State each stage of the speed-time curve with appropriate speeds used
4.4 Explain the Block diagram of Electric locomotive showing catenary, transformer, rectifier and Electric motor.
4.5 Define Maximum speed, average speed and scheduled speed
4.6 List the factors affecting the scheduled speed
4.7 Sketch the simplified speed-time curves
4.8 Explain the practical importance of the above curves
4.9 Derive the expression for maximum speed, acceleration and retardation for trapezoidal speed time curve.
4.10 Solve numerical examples on trapezoidal speed time curves.
4.11 Explain Tractive effort
4.12 Derive the expression for tractive effort.
4.13 Explain the mechanics of transfer of power from motor to driving wheel
4.14 Define ‘Coefficient of adhesion’
4.15 List the factors affecting the coefficient of adhesion
4.16 State the methods of improving the coefficient of adhesion
4.17 Solve problems on calculation of number of axles required.
4.18 Explain the term specific energy consumption
4.19 Derive the formulae for energy output of drive to
Accelerate
i)
To overcome friction
ii)
To overcome gradient
iii)

4.20 List the factors affecting specific energy consumption
4.21 Solve simple problems on specific energy calculation under given conditions
4.22 Explain the purpose and material used for
 a) Catenary
 b) droppers
 c) trolley wires
 d) bow collector
 e) pantograph collector
4.23 Need of Booster Transformer.

5.0 PLC Programming

5.1 Define Programmable Logic Controller (PLC).
5.2 State the advantages of PLC.
5.3 Explain the Block diagram of PLC – parts and their purpose.
5.4 State the applications of PLC.
5.5 Explain Ladder diagram.
5.6 Explain contacts and coils – Normally open, normally closed, energised output, latched
output, branching
5.7 Draw ladder diagrams for AND, OR, NOT gates.
5.8 Draw ladder diagrams for combination circuits using NAND, NOR, AND, OR and NOT.
5.9 Explain Timers – TON, TOFF
5.10 Explain Counters – CTU, CTD
5.11 Draw ladder diagrams using timers and counters.
5.12 Explain PLC Instruction set.
5.13 Draw ladder diagrams for DOL starter and STAR-DELTA starter.
5.14 Explain the meaning of SCADA and mention its applications.

COURSE CONTENTS

1. Electric Lighting
 Nature of light and its production, Terms and definitions plane and solid angle, luminous flux, Lumen, C.P. Illumination, brightness, polar curve, MHCP, MSCP, MHSCP, - types of lamps - Requirements of good lighting different types of lamp fittings- laws of illumination- Terms and factors used in design of lighting schemes for indoor - problems

Heating
 Advantages of electric heating - requirements of good heating material and materials generally employed, resistance heating - Principle and applications - Temperature control of resistance furnaces - Electric arc furnaces - direct and indirect types - applications - Induction heating- core type and coreless type - Applications - Dielectric heating - principle and applications.

Electric Drives and Braking

4. Electric Traction
 Introduction – classification - speed time curves-Derivation for tyrapezoidal speed time curve- different types of train services, urban and sub-urban- factors affecting scheduled speed – problems on trapezoidal speed time curves – Mechanics of train movement - Tractive effort -Coefficient of adhesion - factors affecting the coefficient of adhesion - problemson calculation of number of axles-Specific energy consumption – calculations - –overhead equipment - Booster transformer

5. PLC Programming
REFERENCE BOOKS

1. Electrical power by S.L. Uppal
2. Electrical Utilisation by J.B. Gupta
3. Utilisation of Electric Power by Openshaw Taylor
4. Utilisation of Electric energy by G.C. Garg
5. Modern Electric Traction by H. Partab
6. Programmable logic controllers (principles and applications)
7. Introduction to PLC by Gary Dening, Delmar Publication.
Subjectwise modification table for restructuring of the syllabus.

Branch… **ELECTRICAL & ELECTRONICS ENGG.**,

<table>
<thead>
<tr>
<th>Sub-Code as per C-05</th>
<th>Sub-Code as per C-09</th>
<th>EE-604 (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the subject as per C-05</td>
<td>Name of the subject as per C-09</td>
<td>ELECTRIC TRACTION AND PLC</td>
</tr>
<tr>
<td>No. of periods allotted as per C-05</td>
<td>No. of periods allotted as per C-09</td>
<td>75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sno</th>
<th>Name of the Chapter</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>ELECTRIC TRACTION</td>
<td>+45</td>
<td>+45</td>
<td>Newly introduced as Elective</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>PROGRAMMABLE LOGIC CONTROLLERS</td>
<td>+30</td>
<td>+30</td>
<td>Newly introduced as Elective</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>75</td>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>
ELECTRIC TRACTION & PLC
Subject Title : ELECTRIC TRACTION & PLC
Subject Code : EE-604(B)
Periods/Week : 05
Periods/semester : 75

TIME SCHEDULE

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Major Topics</th>
<th>Periods</th>
<th>Weightage of Marks</th>
<th>Short Questions</th>
<th>Essay Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Electric Traction</td>
<td>45</td>
<td>68</td>
<td>06</td>
<td>05</td>
</tr>
<tr>
<td>2.</td>
<td>Programmable logic controllers</td>
<td>30</td>
<td>42</td>
<td>04</td>
<td>03</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>75</td>
<td>110</td>
<td>10</td>
<td>08</td>
</tr>
</tbody>
</table>

OBJECTIVES

On the completion of the study of the subject the student will be able to comprehend the following

1.0 Electric Traction systems
1.1 Introduction to Electric traction
1.2 State the advantages of Electric traction
1.3 Give the classification of Electric traction systems.
1.4 Explain each traction system briefly.
1.5 Explain the advantages of A.C to D.C traction over other traction systems.
1.6 List the types of services (main line, suburban and urban) Sketch the speed-time curves for the above services
1.7 State each stage of the speed-time curve with appropriate speeds used
1.8 State the importance of speed-time curves
1.9 Define Maximum speed, average speed and scheduled speed
1.10 List the factors affecting the scheduled speed
1.11 Sketch the simplified speed-time curves
1.12 Explain the practical importance of the above curves
1.13 Derive the expression for maximum speed, acceleration and retardation of Trapezoidal speed time curve and quadrilateral speed time curves.
1.14 Solve numerical examples on the above speed time curves.
1.15 Explain tractive effort.
1.16 Derive the expression for tractive effort.
1.17 Solve problems on tractive effort.
1.18 Explain Mechanics of power transfer from motor to driving wheel
1.19 Define ‘Coefficient of adhesion’
1.20 List the factors affecting the coefficient of adhesion
1.21 State the typical values of coefficient of adhesion for steam, diesel and electric drives
1.22 State the methods of improving the coefficient of adhesion
1.23 Solve problems on Co-efficient of adhesion to calculate no of axles required for a locomotive.
1.24 Explain the term specific energy consumption
1.25 Derive the formula for specific energy consumption.
1.27 List the factors affecting specific energy consumption
1.28 Solve simple problems on specific energy consumption under given conditions
1.29 State the important requirements of traction motor
1.30 Explain the suitability of different motors (A.C & D.C) for traction
1.31 Explain with neat sketch the control of traction motor by autotransformer method in Single phase 25 KV system
1.32 Explain the purpose and material used for
 Catenary
droppers
trolley wires
bow collector
pantograph collector
1.33 Need of Booster Transformer.
1.34 Explain END-ON Generation and MID-ON Generation.
1.35 Draw the block diagram of an Electric locomotive and explain the parts.

2.0 **Programmable Logic Controllers**

2.1 Define Programmable Logic Controller (PLC).
2.2 State the advantages of PLC.
2.3 Explain the Block diagram of PLC – parts and their purpose.
2.4 Explain different memories used in PLC.
2.5 Explain PLC scan.
2.6 State different manufacturers of PLC
2.7 State the applications of PLC.
2.8 Explain Ladder diagram.
2.9 Explain contacts and coils – Normally open, normally closed, energised output, latched output, branching
2.10 Draw ladder diagrams for AND, OR, NOT gates.
2.11 Draw ladder diagrams for combination circuits using NAND, NOR, AND, OR and NOT.
2.12 Explain Timers – TON, TOFF and Retentive timer
2.13 Explain Counters – CTU, CTD
2.14 Draw ladder diagrams using timers and counters.
2.15 Explain PLC Instruction set.
2.16 Explain ladder diagrams for DOL starter and STAR-DELTA starter.
2.17 Explain ladder diagrams for Water level controller and traffic light.
2.18 Explain ladder diagram for stair case lighting.
2.19 Explain ladder diagram for Temperature controller.
2.20 List the input and output devices used with PLC.
2.21 State the purpose of Proximity switches.
2.22 Know the purpose Reed devices, Pneumatic switches and actuators.
2.23 Know about Rotary switches
2.24 Know the communication standards and protocols of RS-232, RS-485, RS-422, Modbus, Profibus and CAN bus.
2.25 Know about SCADA
2.26 List different SCADA software used with PLCs.
COURSE CONTENTS

1. Electric Traction

2. Programmable logic controllers

REFERENCE BOOKS

7. Electrical power by S.L. Uppal
8. Electrical Utilisation by Gupta
9. Utilisation of Electric Power by Openshaw Taylor
10. Utilisation of Electric energy by R.K. Gang
11. Electric Traction by H. Partab
12. Programmable Logic Controllers
Subjectwisemodificationtableforrestructuringofthesyllabus.

Branch… **ELECTRICAL & ELECTRONICS ENGG.**,

<table>
<thead>
<tr>
<th>Sub-Code as per C-05</th>
<th>Sub-Code as per C-09</th>
<th>Name of the subject as per C-05</th>
<th>Name of the subject as per C-09</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Electric Traction & Renewable Energy Sources</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S No</th>
<th>Name of the Chapter</th>
<th>Sub-Code as per C-05</th>
<th>Name of the subject as per C-09</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods as per C-09</th>
<th>No. of periods added / deleted</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Electric Traction</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>40</td>
<td>Newly introduced</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Renewable Energy Sources</td>
<td></td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>35</td>
<td>Newly introduced</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: This subject is newly introduced as an elective subject
TIME SCHEDULE

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Major Topics</th>
<th>Periods</th>
<th>Weightage of Marks</th>
<th>Short Questions</th>
<th>Essay Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Electric Traction</td>
<td>40</td>
<td>52</td>
<td>04</td>
<td>04</td>
</tr>
<tr>
<td>2.</td>
<td>Introduction to Renewable energy sources</td>
<td>02</td>
<td>03</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Solar and Wind Energy</td>
<td>16</td>
<td>29</td>
<td>03</td>
<td>02</td>
</tr>
<tr>
<td>4.</td>
<td>Bio and Tidal Energy</td>
<td>12</td>
<td>13</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>5.</td>
<td>Combined Cycle power Plants</td>
<td>05</td>
<td>13</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>75</td>
<td>110</td>
<td>10</td>
<td>08</td>
</tr>
</tbody>
</table>

OBJECTIVES

On the completion of the study of the subject the student will be able to comprehend the following

1.0 Electric Traction systems
1.1 Describe single-phase A.C. and composite systems
1.2 State the advantages and disadvantages of electric traction
1.2 List the types of services (main line, suburban and urban) Sketch the speed-time Curves for the above services
1.3 State each stage of the speed-time curve with appropriate speeds used
1.4 State the importance of speed-time curves
1.5 Define Maximum speed, average speed and scheduled speed
1.6 List the factors affecting the scheduled speed
1.7 Sketch the simplified speed-time curves
1.8 Explain the practical importance of the above curves
1.9 Derive the expression for maximum speed, acceleration and retardation (Trapezoidal & Quadrilateral speed time curves)
1.10 Solve numerical examples on speed time curves
1.11 Explain the tractive effort
1.12 Derive the expression for tractive effort for acceleration, to over come gravity pull and train resistance
1.13 Calculate the tractive effort under given conditions
1.14 Explain the mechanics of transfer of power from motor to driving wheel
1.15 Define 'Coefficient of adhesion'
1.16 List the factors affecting the coefficient of adhesion
1.17 State the typical values of coefficient of adhesion for steam, diesel and electric drives
1.18 State the methods of improving the coefficient of adhesion
1.19 Explain the term specific energy consumption
1.20 Derive the formulae for energy output of drive to

Accelerate
To overcome friction
To overcome gradient
1.21 List the factors affecting specific energy consumption
1.22 Solve simple problems on specific energy calculation under given conditions
1.23 State the important requirements of traction motor
1.24 Explain the suitability of different motors (A.C & D.C) for traction
1.25 Explain with neat sketch the control of traction motor by autotransformer method in
Single phase 25 kV system
1.26 Explain the purpose and material used for

Catenary
droppers
trolley wires
bow collector
pantograph collector
1.27 Need of Booster Transformer.
1.28 Explain train lighting systems

2.0 Introduction to Renewable Energy Sources
2.1 To appreciate the need of renewable energy sources
2.2 State the different types of renewable energy sources

3.0 Solar and Wind Energy
3.1 State the amount of solar radiation reaching the earth’s surface
3.2 Determine the solar constant
3.3 State the principle of conversion of solar radiation into heat.
3.4 Explain the function of flat plate collector
3.5 Explain the working principle of solar air heater with neat sketch and application
3.6 Identify different types of concentrating collectors
3.7 Explain the working principle of concentrating collector (focusing type, parabolic trough collector)
3.8 State the different methods of storing solar energy
3.9 Explain the working principle of solar pond with a sketch
3.10 State the applications of solar pond
3.11 Explain with the help of sketches the construction details and working principle of different types of solar water heater, solar still, and solar cooker.
3.12 Understand the principle of photo-voltaic conversion and applications
3.13 Understand the solar photovoltaic arrays
3.14 State the working principle of solar cell
3.15 Explain the conversion energy and current voltage characteristics of solar cell.
3.16 Explain the solar water pumping system with a sketch
3.17 Understand the power available in the wind and force caused by it on the blades.
3.18 State the collection of wind data and estimate the energy
3.19 State the different considerations for sight selection for installing wind mill.
3.20 Identify the basic components of a wind mill
3.21 Explain the construction details on the working principle of the wind mill

4.0 Bio and Tidal Energy
4.1 Understand the meaning of bio-mass and bio-gas
4.2 State the principle of bio-gas generation and its applications
4.3 List out the different types of bio-gas plants
4.4 Explain the construction and working of fixed dome type and floating dome type bio-gas Plants with sketches
4.5 Express bio-gas plant capacity
4.6 Identify the energy available in tides and its usefulness in conversion
4.7 State the working principle of tidal power plant
4.8 State the types of tidal power plants.
4.9 Understand single basin and double basin arrangements
4.10 State the site requirements for installation of tidal power plant
4.11 State the advantages and limitations of tidal power generation

5.0 Combined cycle power plants
5.1 Explain with block diagram the working of combined cycle power plants
5.2 State the advantages of combined cycle power plants over conventional coal fired Thermal Power plant.
5.3 State the applications of Combined cycle Power Plants.

COURSE CONTENTS

1. Electric Traction systems
Introduction - different systems of train electrification - speed time curves - different types of train services, urban and sub-urban- factors affecting scheduled speed - problems – Mechanics of train movement - Coefficient of adhesion - factors affecting the coefficient of adhesion - Tractive effort - problems -Specific energy consumption – calculations - Traction motors A.C & D.C – control of traction motor by auto transformer - over head equipment - Current collecting gears - Booster transformer – Train Lighting Systems.

2.0 Introduction to renewable Energy Sources
Need of renewable energy sources-different types of renewable energy sources

3.0 Solar and Wind Energy
selection for installing Wind mill-basic components, constructional details and working principle of wind mill.

4.0 Bio and Tidal Energy
Introduction to bio-mass, bio-mass conversion into energy bio-gas generation, Principle of bio gas generation & its applications-Different type of Bio gas plants-Construction and working of fixed dome type and floating dome type bio-gas plants -Bio-gas plant capacity-Energy available in tides and its usefulness in-working principle of tidal power plants -types of Tidal power plants-Single basin and double basin arrangements-Site requirements for installation of tidal power plants-Advantage and limitations of tidal power generation

5.0 Combined cycle power plants
Block diagram-Working of combined cycle power plants-Advantages and applications of combined cycle power plant

REFERENCE BOOKS

1. Electrical Technology Vol III by B L Theraja
2. Electric Traction by H. Partab
4. Energy Technology by S. Rao & Dr. D.B. Palekr (Non conventional, Renewable and conventional)
5. Solar energy utilisation by G.D. Rai
6. Introduction to alternate sources of energy by TTTI, Madras
7. Solar energy by S.P. Sukhatme
9. Energy sources and conservation by Pakirappa
C-09 – EE-605

Subjectwisemodificationtableforrestructuringofthesyllabus.

<table>
<thead>
<tr>
<th>Sl no</th>
<th>Name of the Chapter</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Transmission lines</td>
<td>20</td>
<td>Deleted Derivation for inductance and Capacitance of a Transmission line Problems with T Method</td>
<td>0</td>
<td>20</td>
<td>Not required at the diploma level</td>
</tr>
<tr>
<td>2</td>
<td>HVDC Transmission</td>
<td>05</td>
<td>No change</td>
<td>0</td>
<td>05</td>
<td>No Change</td>
</tr>
<tr>
<td>3</td>
<td>Line Structures for Transmission & Distribution</td>
<td>20</td>
<td>No change</td>
<td>0</td>
<td>20</td>
<td>Can be covered in the prescribed periods</td>
</tr>
<tr>
<td>4</td>
<td>Cables & Substations</td>
<td>10+10</td>
<td>Construction of cables</td>
<td>10(Deleted)</td>
<td>10</td>
<td>covered in the Electrical workshop I Year</td>
</tr>
<tr>
<td>5</td>
<td>Distribution Systems</td>
<td>10</td>
<td>No change</td>
<td>-</td>
<td>10</td>
<td>No Change</td>
</tr>
<tr>
<td>6</td>
<td>Protection of transmission lines and feeders</td>
<td>05</td>
<td>No change</td>
<td>+10</td>
<td>15</td>
<td>More periods are required</td>
</tr>
<tr>
<td>7</td>
<td>Lightning arrestors & neutral grounding</td>
<td>10</td>
<td>No change</td>
<td>-</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>75+15</td>
<td></td>
<td>-</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>
TIMESCHEDULE

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Major Topics</th>
<th>Periods</th>
<th>Weightage of Marks</th>
<th>Short Questions</th>
<th>Essay Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Transmission lines</td>
<td>20</td>
<td>31</td>
<td>02</td>
<td>2 ½</td>
</tr>
<tr>
<td>2.</td>
<td>HVDC transmission</td>
<td>05</td>
<td>03</td>
<td>01</td>
<td>--</td>
</tr>
<tr>
<td>3.</td>
<td>Line structures for transmission and Distribution</td>
<td>20</td>
<td>26</td>
<td>02</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>Substations and Cables</td>
<td>10</td>
<td>11</td>
<td>02</td>
<td>½</td>
</tr>
<tr>
<td>5.</td>
<td>Distribution Systems</td>
<td>10</td>
<td>13</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>6.</td>
<td>Protection of transmission lines and Feeders</td>
<td>15</td>
<td>13</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>7.</td>
<td>Lightning arresters and Neutral grounding</td>
<td>10</td>
<td>13</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
<td>90</td>
<td>110</td>
<td>10</td>
<td>08</td>
</tr>
</tbody>
</table>

OBJECTIVES
On the completion of study of the subject the student should be able to comprehend the following

1.0 Comprehend the need for transmission and choice of supply systems
1.0 State the need of transmission lines and distribution lines
1.1 Explain the transmission supply systems
 a) D.C
 b) A.C
1.3 State the relative advantages of D.C and A.C. transmissions
1.4 State the supply systems based on the conductor material required for overhead lines and underground cables among
 a) AC - 1 ph 2 wire system
 b) AC - 3 ph 3 wire system
 c) DC – 2 wire system
1.5 Explain the effects of
 a) Supply frequency
 b) Supply voltage on transmission lines
1.6 Explain the effect of voltage on
 a) Line efficiency
 b) Voltage drop
c) Line loss

d) Volume of conductor material

e) Cost of transformers, insulators, and switchgear supports etc.

1.7 State the empirical formula for determining the system voltage

1.8 State the requirements of conductor material

1.9 State the type of transmission line conductors
 a) Solid b) Stranded c) Hollow d) Bundled conductors

1.10 State the relative merits of different types of above conductors

1.11 Explain the current distortion effects
 a) Skin effect
 b) Proximity effect
 c) Spirality effect

1.12 Use the conductor tables for the determination of resistance of solid, ACSR and AAAC conductors (I.S.398)

1.13 Expression for inductance of
 a) 1 phase
 b) 3 phase symmetrical and asymmetrically spaced round conductors
 (No derivation)

1.14 State the need for transposition of overhead lines

1.15 Explain the effects of transposition

1.16 Define capacitance

1.17 Expressions for capacitance of
 a) 1 phase
 b) 3 phase symmetrically spaced, asymmetrically spaced and transposed lines
 round conductors (No- Derivation)

1.18 Use the conductors tables for determining the inductance and capacitance of overhead lines of different voltage

1.19 Define short, medium and long lines.

1.20 State the reasons for the constants lumped in short lines and medium transmission lines.

1.21 Define ‘regulation’ and percentage regulation.

1.22 Derive the approximate formula for percentage regulation.

1.23 Computing for short line
 a) Sending end voltage
 b) Sending end P.F
 c) percentage regulation
 d) Efficiency for the given receiving end condition

1.24 Solve problems on short lines

1.25 Compute the percentage regulation, efficiency of medium transmission lines with given receiving end conditions and line parameters using
 a) Nominal (pie) method
 b) Nominal T-method
 (Solve problems on nominal Pie method only)

1.26 Draw the phasor diagram in the above methods

1.27 Explain the charging current in lines and power loss due to it

1.28 State ‘Ferranti’ effect

1.29 Compute the rise in voltage at the receiving end

1.30 State the factors affecting corona

1.31 Explain corona in transmission lines
2.0 Understand HVDC transmission
2.1 Explain the importance of HVDC Transmission of power
2.2 Discuss basic concepts of HVDC transmission
2.3 Know the location of Projects in India and abroad
2.4 Discuss the advantages and disadvantages of HVDC transmission
2.5 Discuss the protective measures to be adopted for HVDC system

3.0 Line structures for transmission and Distribution
3.1 State the main components of overhead lines
3.2 State the requirements of line supports
3.3 List the factors influencing the selection of the line supports
3.4 a) List the types of line supports
b) State the advantages and disadvantages of each as a line support
3.5 Describe a method of laying foundation to poles
3.6 a) State the need for cross arms
b) Give the formula for economical spacing of conductors
3.7 State the necessity for pole guys
3.8 Describe the methods of fixing of guys
 i) Bow
 ii) Fly guys
3.9 State the factors on which the conductor spacing and ground clearance depend
3.10 List the common conductor spacing and ground clearances adopted for
 i) 66 KV
 ii) 33 KV
 iii) 11 KV
 iv) L.T. lines
3.11 Explain the procedure of Earthing L.T.11 KV and 33 KV lines with different supports
3.12 List the Maximum earth resistance value together with the size of pipe or plate used for
 Earthing
3.13 State the types of towers with sketches for 132 Kv, 220 KV, 400 KV and the common spans adopted in the country (both single and double circuit)
3.14 State the minimum ground clearances adopted for
 a) 132 KV
 b) 220 KV
 c) 400 KV
3.15 Explain a method of laying foundation to towers
3.17 Define `sag`
3.18 State the factors affecting the sag
3.19 Derive an equation for the approximate method of calculating sag.
 a) when the supports are at the same level (a) in still air and
 b) with the effect of wind and ice
c) when the supports are at different levels
3.20 solve the problems on above
3.21 State the disadvantages of loose spans (sag more than prescribed value)
3.22 State the importance of using stringing charts
3.23 State the purpose of insulators in transmission and distribution lines
3.24 State the requirements of insulators
3.25 State applications of
 a) Pin type
 b) Strain type
 c) Suspension type insulators
 d) Shackles type
3.26 Tabulate the relative merits of pin and suspension type insulators
3.27 Conclude that the voltage across a string does not distribute uniformly across the individuals discs
3.28 Define the terms
 a) Flashover
 b) Puncture
 c) String-efficiency
3.29 Solve problems on distribution of voltage across string
3.30 State the methods of improving string efficiency
 a) By eliminating ground capacitance
 b) By grading of the units
 c) Static shielding(guard ring)
3.31 Solve problems in equalisation of potential across a string
3.32 State the need for arcing horns and guard rings
3.33 List causes of failure of insulators in transmission and distribution lines

4.0 Substations and Underground Cables
4.1 Explain the need for substations
4.2 State the relative merits of indoor and outdoor substation
4.3 Name the equipment used in substation
 a) Bus bars b) Insulators
 c) Transformers d) Switch gear
 e) Indicating and metering equipment
 f) Protective relays g) Lightning arrestors
 h) Cables i) Fire fighting equipment
4.4 Substation auxiliary supply
4.5 Sketch typical scheme of bus bar arrangements
4.6 Sketch the typical layouts of
 33/11 KV substation
 132/11 KV substation
4.7 Define cables
4.8 Compare overhead lines with underground cables
4.9 State the classification of cables according to
 a) Number of conductors
 b) Voltage
 c) Insulation and lead sheathing
 d) The methods of improving the dielectric stresses
4.10 Derive an equation for the insulation resistance of a cables & solve problems on insulation resistance
5.0 Understand the Different Distribution Systems
5.1 Distinguish between primary distribution and secondary distribution
5.2 Explain Feeder, distribution and service mains
5.3 Classify the type of distribution systems according to
 a) Type of current b) Construction
 c) Service d) Number of wire
 e) Scheme of connections
5.4 List the type of distribution systems
 a) radial and
 b) ring systems
5.5 State the advantages and disadvantages of radial and ring systems
5.6 List the steps involved in the voltage drop calculations in A.C. distributors
5.7 Solve problems on voltage drop calculations in A.C. distributors.

6.0 Protection of Transmission Lines and Feeders
6.1 Understand transmission line and feeder protection.
6.2 Explain pilot wires and their effects.
6.3 Explain the protection of transmission lines using distance and impedance relays.
6.4 Explain the combined protection by using definite distance and time distance relays.
6.5 Explain protection of radial feeders using time graded fuses.
6.6 Explain protection of parallel feeders using directional relays.
6.7 Explain protection of ring main feeder using directional relays. Mention the relation between number of sections and minimum relay time.
6.8 Explain differential protection for parallel feeders of transmission lines.
6.9 Explain the different schemes of protection for single and duplicate bus bars.

7.0 Lighting Arrestors and Neutral Grounding.
7.1 Define surge, its types, and causes for production.
7.2 Explain the scheme of surge protection with diagram.
7.3 Explain the types of lightning arrestors or surge diverters.
7.4 Explain the construction, working and applications of Valve type lighting arrestor
7.5 Explain the construction, working and applications of Thyrite type lighting arrestor
7.6 Explain necessity of neutral grounding and give its merits and demerits.
7.7 Describe types of grounding the neutral and compare them.

COURSE CONTENTS

1. Transmission Lines-Need for transmission lines-Transmission supply systems, Relative advantages of AC & DC Transmission, Choice of frequency, Choice of voltage, Effect of voltage, Empirical formula for determining the system voltage, Requirements of conductor material - Types of conductor-Solid-Stranded-Hollow- Bundled conductors -Relative merits of different types of conductors -Transmission parameters: Resistance, Inductance capacitance-skin effect, proximity effect, spirality effect-Determination of resistance of solid, ACSR and AAAC conductors using conductor tables-Determination of inductance of Round and Parallel Conductors ,Transposition of O.H. lines-Effect of transposition on Inductance calculations in transposed lines, Calculation of capacitance in round and parallel conductors -Use of conductor tables of determination of inductance and capacitance of transmission lines-Regulation and % Regulation-Approximate formula for
Regulation - Short line calculation of Efficiency - Regulation - Sending end voltage sending end p.f. for the given receiving end conditions - Regulation - Sending end voltage sending end p.f. for the given receiving end conditions in medium transmission lines using Nominal pie method - Nominal T method - Vector diagrams in the above methods - Charging current in lines - Ferranti's effect - Corona in transmission lines - Power loss due to corona - Effects of corona - Methods of reducing corona - Hot line technique - concept and application

3. Line structure for Transmission and Distribution: Requirements of line supports, Factors influencing the selection of line support - Types of lines supports - Foundation for poles - Descriptive treatment - Cross arms for L.T and H.T lines upto 33 KV - Pole guys - Conductors spacing and ground clearance - Methods of earthing - L.T., 11 KV and 33 KV lines - Max. earth resistance - Types of towers used for 132 KV and 220 KV / 400 KV lines - Approximate ground clearance - Foundation to towers - Earthing of towers - Sag, Factors affecting sag, calculating sag. Disadvantages of loose span, stringing charts, Insulators, Requirements of insulators, Materials used, Types of Insulators, Voltage distribution across string of suspension Insulators, string efficiency, Flashover, Puncture, string efficiency, improving string efficiency, eliminating the ground capacitance, grading, static shielding, Arcing horns and guard rings, Causes for failure of insulators

4. Substations and Cables
Definition and classification of sub-stations, Relative merits of indoor and outdoor substations

5. Distribution Systems
Primary and secondary distribution, Feeders, distribution and service mains, Classification of Distribution systems, Radial and Ring system of Distribution, A.C. Distribution - single phase, Steps in voltage drop calculation.

6. Protection of transmission lines and Feeders
7. Lighting Arrestors and Neutral grounding

Surge Protection- Need for Surge Protection Surge types and causes of surges – Scheme of surge protection with diagram. Various types of LA’s – Value type, Thyrite type -Necessity of neutral grounding, its merits and de-merits- Methods of Grounding the neutral.

Reference Books

1. Principle of Power systems - V.K. Mehta
2. Electrical power - S.L. Uppal
4. Electrical Power - JB Gupta
5. Electrical power Systems - CL Wadhwa
6. HVDC Power Transmission system Technology - KR Padiyar
Subjectwise modification table for restructuring of the syllabus.

Branch… **ELECTRICAL & ELECTRONICS ENGG.,**

<table>
<thead>
<tr>
<th>Sub-Code as per C-05</th>
<th>EE-507</th>
<th>Sub-Code as per C-09</th>
<th>EE-606</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the subject as per C-05</td>
<td>Electrical laboratory -II</td>
<td>Name of the subject as per C-09</td>
<td>A.C.Machines Laboratory –II</td>
</tr>
<tr>
<td>No. of periods allotted as per C-05</td>
<td>90</td>
<td>No. of periods allotted as per C-09</td>
<td>90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S No</th>
<th>Name of the Chapter</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Three phase induction motors</td>
<td></td>
<td>Automatic star delta stater added</td>
<td></td>
<td></td>
<td>As in recent days automatic star delta starters are using</td>
</tr>
<tr>
<td>2</td>
<td>Single phase induction motors</td>
<td></td>
<td>No change</td>
<td></td>
<td></td>
<td>No change</td>
</tr>
<tr>
<td>3</td>
<td>Synchronous machines</td>
<td></td>
<td>No change</td>
<td></td>
<td></td>
<td>No change</td>
</tr>
<tr>
<td>4</td>
<td>Trouble shooting</td>
<td></td>
<td>No change</td>
<td></td>
<td></td>
<td>No change</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>90</td>
<td>-</td>
<td>90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
List of Experiment :

1. Brake test on 3-phase squirrel cage induction motor.
2. Brake test on 3-phase slip ring induction motor.
3. Conduct suitable tests and draw circle diagram of squirrel cage induction motor.
4. Conduct suitable tests and draw circle diagram of slip ring induction motor.
5. Conduct load test on synchronous motor and draw V and inverted V curves.
7. Conduct load test on capacitor type induction motor.
9. Identify the faults and rectify the faults of a D.C. shunt motor.
10. Identify the faults and rectify the faults of D.C. compound motor.
11. Identify and rectify the faults in D.C 3 point starter, D.O.L Starter and Rotor resistance starter.
12. Identify and rectify the faults in manual and automatic star/Delta starter.
14. Overhauling of a table fan and ceiling fan.
15. Identify and rectify the faults in a single-phase motor.
16. Repair domestic appliances such as:
 a) Automatic Electric Iron,
 b) Wet grinder,
 c) Mixer,
 d) Water Heater.
17. Overhauling of 3-phase induction motor.
20. Testing of over current relay.
Subject wise modification table for restructuring of the syllabus.

Branch… ELECTRICAL & ELECTRONICS ENGG.,

<table>
<thead>
<tr>
<th>Sl no</th>
<th>Name of the Chapter</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Characteristic of power Electronics devices</td>
<td>Added IGBT Characteristics AddedGTO Characteristics</td>
<td>Industry orientation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Speed Control of AC &DC Drives</td>
<td>Added Half converter Added Full converter Added Chopper Circuit for drive</td>
<td>Industry orientation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Charging circuit</td>
<td>Added Battery charging circuit using SCR</td>
<td>Industry orientation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>60</td>
<td>-15</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
POWER ELECTRONICS LAB

Subject Title : POWER ELECTRONICS LAB
Subject code : EE – 607

Periods/Week : 03
Periods/Semester : 45

POWER ELECTRONICS LAB

LIST OF EXPERIMENTS

1. Characteristics of SCR
2. Characteristics of IGBT
3. Characteristics of DIAC
4. Characteristics of TRIAC.
5. Characteristics of GTO
6. Study of Single – Phase Half and Fully controlled Bridge
7. Study of Single phase invertors using SCR’s
8. D.C Motor speed control using Single phase Half converter
10. Control the speed of a given single phase motor using SCR
11. Speed control of DC Motor using Chopper
12. Study of DIAC & TRIAC Lamp control.
13. Battery charger circuit using SCR
Subjectwisemodificationtableforrestructuringofthesyllabus.

Branch…ELECTRICAL & ELECTRONICS ENGG.,

<table>
<thead>
<tr>
<th>Sno</th>
<th>Name of the Chapter</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Experiments 1 to 5</td>
<td>10</td>
<td>Made as Expts 1 to 6</td>
<td>+2.5</td>
<td>12.5</td>
<td>More periods are required</td>
</tr>
<tr>
<td>2</td>
<td>Experiment 6</td>
<td>2</td>
<td>Deleted</td>
<td>-2</td>
<td>0</td>
<td>Already there in manual drawing</td>
</tr>
<tr>
<td>3</td>
<td>Experiments 7 & 8</td>
<td>4</td>
<td>No change</td>
<td>+2</td>
<td>6</td>
<td>More periods are required</td>
</tr>
<tr>
<td>4</td>
<td>Experiments 9,10,11</td>
<td>6</td>
<td>Deleted</td>
<td>-6</td>
<td>0</td>
<td>Already there in manual drawing</td>
</tr>
<tr>
<td>5</td>
<td>Experiments 12,13</td>
<td>4</td>
<td>No change</td>
<td>0</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Experiments 14 & 15</td>
<td>4</td>
<td>Deleted</td>
<td>-4</td>
<td>0</td>
<td>Already there in manual drawing</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>30</td>
<td></td>
<td>-7.5</td>
<td>22.5</td>
<td></td>
</tr>
</tbody>
</table>
Electrical CAD LAB

Subject Title : Electrical CAD LAB
Subject code : EE – 608

Periods/Week : 03 (for EE-608 and EE-609)
Periods/Semester : 45 (for EE-608 and EE-609)

LIST OF EXPERIMENTS

Using AutoCAD :

1. Study the AutoCAD screen, various toolbars and menus.
2. Exercise on usage of Draw and modify tool bar.
3. Exercise on mirror, rotate, Array and Move commands.
4. Exercise on Dimensioning
5. Exercise on Hatching

Using Electrical CAD :

7. Draw Poles and Towers
8. Draw Pipe and Plate Earthing.
10. Draw different types of Stays.
Subjectwise modification table for restructuring of the syllabus.

Branch… ELECTRICAL & ELECTRONICS ENGG.,

<table>
<thead>
<tr>
<th>Sub-Code as per C-05</th>
<th>EE-607</th>
<th>Sub-Code as per C-09</th>
<th>EE-609</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the subject as per C-05</td>
<td>INDUSTRIAL AUTOMATION LAB</td>
<td>Name of the subject as per C-09</td>
<td>INDUSTRIAL AUTOMATION LAB</td>
</tr>
<tr>
<td>No. of periods allotted as per C-05</td>
<td>60 (FOR TWO LABS)</td>
<td>No. of periods allotted as per C-09</td>
<td>45 (FOR TWO LABS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sno</th>
<th>Name of the Chapter</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Study of PLC</td>
<td>4</td>
<td>Demo of PLC and ladder diagram</td>
<td>-1.5</td>
<td>2.5</td>
<td>Objective modified</td>
</tr>
<tr>
<td>2</td>
<td>Ladder program for DOL</td>
<td>2</td>
<td>Ladder diagram for AND, OR, NOT</td>
<td>0</td>
<td>2</td>
<td>Objective modified</td>
</tr>
<tr>
<td>3</td>
<td>Stair case lighting</td>
<td>2</td>
<td>Ladder dia for NAND, NOR</td>
<td>0</td>
<td>2</td>
<td>Objective modified</td>
</tr>
<tr>
<td>4</td>
<td>Seq. control of motors</td>
<td>2</td>
<td>Ladder using timers</td>
<td>0</td>
<td>2</td>
<td>Objective modified</td>
</tr>
<tr>
<td>5</td>
<td>Star delta starter</td>
<td>2</td>
<td>Ladder using counters</td>
<td>0</td>
<td>2</td>
<td>Objective modified</td>
</tr>
<tr>
<td>6</td>
<td>Stepper motor control</td>
<td>2</td>
<td>Stair case lighting</td>
<td>0</td>
<td>2</td>
<td>Objective modified</td>
</tr>
<tr>
<td>7</td>
<td>Temperature control</td>
<td>2</td>
<td>Traffic light</td>
<td>0</td>
<td>2</td>
<td>Objective modified</td>
</tr>
<tr>
<td>8</td>
<td>Traffic light</td>
<td>2</td>
<td>Temperature control</td>
<td>0</td>
<td>2</td>
<td>Objective modified</td>
</tr>
<tr>
<td>9</td>
<td>Conveyor control</td>
<td>2</td>
<td>Water level controller</td>
<td>0</td>
<td>2</td>
<td>Objective modified</td>
</tr>
<tr>
<td>10</td>
<td>Lift control</td>
<td>2</td>
<td>DEMO OF dol, star delta, conveyor, lift</td>
<td>0</td>
<td>2</td>
<td>Objective modified</td>
</tr>
<tr>
<td></td>
<td>Water level controller</td>
<td>2</td>
<td>Shifted</td>
<td>0</td>
<td>0</td>
<td>Objective modified</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>---</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>12</td>
<td>SCADA</td>
<td>3</td>
<td>Deleted</td>
<td>-3</td>
<td>0</td>
<td>Not required</td>
</tr>
<tr>
<td>13</td>
<td>Interface with PLC</td>
<td>3</td>
<td>Deleted</td>
<td>-3</td>
<td>0</td>
<td>Not required</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>30</td>
<td></td>
<td>7.5</td>
<td>22.5</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF EXPERIMENTS:

1. Demonstration of PLC and Ladder diagram – Preparation, downloading, running.

 Execution of ladder diagrams:

2. Ladder diagrams for AND, OR, NOT gates.
3. Ladder diagrams for the combination circuits using AND, OR, NAND and NOR gates.
4. Ladder diagrams using Timers.
5. Ladder diagrams using Counters

 Execution of ladder diagrams with model applications:

6. Ladder diagram for stair case lighting and running the model application.
7. Ladder diagram for Traffic light and running the model application.
8. Ladder diagram for Water Level Controller and running the model application.
9. Ladder diagram for Temperature controller and running the model application
10. Demo of DOL Starter, Star-Delta Starter, Conveyor and Lift application models.
Subjectwisemodificationtableforrestructuringofthesyllabus

Branch......**ELECTRICAL & ELECTRONICS ENGG**

<table>
<thead>
<tr>
<th>Sub-Code as per C-05</th>
<th>Sub-Code as per C-09</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE -610</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of the subject as per C-05</th>
<th>Name of the subject as per C-09</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>English Communication Lab Level III</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of periods allotted as per C-05</th>
<th>No. of periods allotted as per C-09</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sno</th>
<th>Name of the Sub Topic</th>
<th>No. of periods As per C_05</th>
<th>Topics proposed for Addition / deletion</th>
<th>No. of periods added / deleted</th>
<th>No. of periods As per C_09</th>
<th>Justification for Addition / Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Looking for a job-identifying sources-Filling in applications-writing a CV-writing a cover letter</td>
<td>---</td>
<td>----</td>
<td>---</td>
<td>10</td>
<td>Is need based</td>
</tr>
<tr>
<td>2</td>
<td>Job Interviews-preparing for an interview-responding appropriately-practice sessions</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>10</td>
<td>Is need based</td>
</tr>
<tr>
<td>3</td>
<td>At the workplace-work place etiquette-business communication-letter writing</td>
<td>----</td>
<td>---</td>
<td>---</td>
<td>10</td>
<td>Is need based</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
Subject Title : English Communication Lab (Level III)

Subject Code : EE-610
Periods/Week : 02
Periods per semester : 30

Introduction:
To cater to the immediate needs of the final year students in terms of their communicative competence. The course would give them practice in grooming themselves.

<table>
<thead>
<tr>
<th>S. No</th>
<th>Major Topics</th>
<th>No. of Periods</th>
<th>Weightage of Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Looking for a job-identifying sources-Filling in applications</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>-writing a CV-writing a cover letter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Job Interviews-preparing for an interview-responding appropriately</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>-practice sessions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>At the workplace-workplace etiquette-business communication</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>-letter writing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>30</td>
<td>50</td>
</tr>
</tbody>
</table>

Objectives:
On completion of the course the student should be able to…

- gain confidence to attend job interviews
- Understand and go about the process of job searching
- Manage communication at the work place
- Understand the methodology of report writing
Course Contents:

Theoretical input regarding interviews, project work planning, answering advertisements, and writing formal, informal and official letters. Activities that improve cooperative learning and soft skills.

Course Material:

Course material may be prepared by the faculty teaching English in the Polytechnics of A.P. in due course. Course material may comprise

Text book
CD for audio output
CD – (e-lessons) (visual & audio)

Time needed to prepare the course material ------ 4 -6 months
Number of members on the team --------------------- 5
CURRICULUM-2009
General Suggestions on Curriculum-09 for restructing of the syllabus.

Branch……ELECTRICAL & ELECTRONICS ENGG.,

<table>
<thead>
<tr>
<th>Institution Code:</th>
<th>Inst. Name & Address:</th>
<th>Name of the Staff - Member & Designation:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sno</th>
<th>Suggestions about the New curriculum</th>
<th>Reasons / Comments / Remarks/Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: If necessary attach separate sheet.

SIGNATURE
CURRICULUM-2009
Subjectwise Suggestions-tableforrestructuringofthesyllabus.

Branch……ELECTRICAL & ELECTRONICS ENGINEERING

<table>
<thead>
<tr>
<th>Institution Code:</th>
<th>Inst. Name & Address:</th>
<th>Name of the Staff - Member & Designation:</th>
</tr>
</thead>
</table>

Sub-Code as per C-09

Name of the subject as per C-09

<table>
<thead>
<tr>
<th>Sno</th>
<th>Name of the Chapter</th>
<th>Topics proposed for Addition / deletion</th>
<th>Addition / Deletion</th>
<th>Reasons / Comments / Remarks/Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: If necessary attach separate sheet.
